tidal torque
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 502 (4) ◽  
pp. 5528-5545 ◽  
Author(s):  
Pablo López ◽  
Marius Cautun ◽  
Dante Paz ◽  
Manuel Merchán ◽  
Rien van de Weygaert

ABSTRACT The alignment between halo spins and the cosmic web is still poorly understood despite being a widely studied topic. Here, we study this alignment within the context of tidal torque theory (TTT) and deviations from it. To this end, we analyse the evolution of the shape and spin direction of proto-haloes, i.e. of all the volume elements associated to a z = 0 halo, with respect to the present-day filaments. We find that the major axis of proto-haloes undergoes a major change, from being strongly perpendicular to the filament spine in the initial conditions, to being preferentially aligned at the present time. In comparison, the spin orientation shows only a mild evolution: it starts slightly parallel to the filament spine, but the subsequent evolution, up to z ∼ 1, gradually changes its orientation to preferentially perpendicular. In order to analyse these signals in the TTT framework, we split the haloes according to their net spin growth with respect to the median TTT expectation, finding a clear correlation with the spin–filament alignment. At the present time, haloes whose spin grew the most are the ones most perpendicular to the filament spine, while haloes whose spin grew below the median TTT expectation are typically more aligned. The dependence of spin directions on net spin growth is already present in the initial conditions, and gets further modified by late-time, z < 2, evolution. Also, spin directions mildly deviate from the TTT predictions even at high redshift, indicating the need for extensions to the model.


Author(s):  
Corentin Cadiou ◽  
Andrew Pontzen ◽  
Hiranya V Peiris

Abstract The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular, it is unclear whether angular momentum growth is stochastic. To address this question, we extend the genetic modification technique to allow control over the angular momentum of any region in the initial conditions. Using this technique to produce a sequence of modified simulations, we can then investigate whether changes to the angular momentum of a specified region in the evolved universe can be accurately predicted from changes in the initial conditions alone. We find that the angular momentum in regions with modified initial conditions can be predicted between 2 and 4 times more accurately than expected from applying tidal torque theory. This result is masked when analysing the angular momentum of haloes, because particles in the outskirts of haloes dominate the angular momentum budget. We conclude that the angular momentum of Lagrangian patches is highly predictable from the initial conditions, with apparent chaotic behaviour being driven by stochastic changes to the arbitrary boundary defining the halo.


2020 ◽  
Vol 493 (1) ◽  
pp. 362-381 ◽  
Author(s):  
Katarina Kraljic ◽  
Romeel Davé ◽  
Christophe Pichon

ABSTRACT We study the spin alignment of galaxies and haloes with respect to filaments and walls of the cosmic web, identified with DisPerSE , using the Simba simulation from z = 0 − 2. Massive haloes’ spins are oriented perpendicularly to their closest filament’s axis and walls, while low-mass haloes tend to have their spins parallel to filaments and in the plane of walls. A similar mass-dependent spin flip is found for galaxies, albeit with a weaker signal particularly at low mass and low-z, suggesting that galaxies’ spins retain memory of their larger scale environment. Low-z star-forming and rotation-dominated galaxies tend to have spins parallel to nearby filaments, while quiescent and dispersion-dominated galaxies show preferentially perpendicular orientation; the star formation trend can be fully explained by the stellar mass correlation, but the morphology trend cannot. There is a dependence on HI mass, such that high-HI galaxies tend to have parallel spins while low-HI galaxies are perpendicular, suggesting that HI content may trace anisotropic infall more faithfully than the stellar component. Finally, at fixed stellar mass, the strength of spin alignments correlates with the filament’s density, with parallel alignment for galaxies in high density environments. These findings are consistent with conditional tidal torque theory, and highlight a significant correlation between galactic spin and the larger scale tides that are important e.g., for interpreting weak lensing studies. Simba allows us to rule out numerical grid locking as the cause of previously-seen low mass alignment.


2019 ◽  
Vol 630 ◽  
pp. A102 ◽  
Author(s):  
Alexandre C. M. Correia ◽  
Jean-Baptiste Delisle

We study the spin evolution of close-in planets in multi-body systems and present a very general formulation of the spin-orbit problem. This includes a simple way to probe the spin dynamics from the orbital perturbations, a new method for computing forced librations and tidal deformation, and general expressions for the tidal torque and capture probabilities in resonance. We show that planet–planet perturbations can drive the spin of Earth-size planets into asynchronous or chaotic states, even for nearly circular orbits. We apply our results to Mercury and to the KOI-1599 system of two super-Earths in a 3/2 mean motion resonance.


2019 ◽  
Vol 488 (2) ◽  
pp. 1960-1976 ◽  
Author(s):  
Umin Lee ◽  
Daiki Murakami

ABSTRACT We calculate tidal torque due to semidiurnal thermal tides in rotating hot Jupiters, taking account of the effects of radiative cooling in the envelope and of the planets rotation on the tidal responses. We use a simple Jovian model composed of a nearly isentropic convective core and a thin radiative envelope. To represent the tidal responses of rotating planets, we employ series expansions in terms of spherical harmonic functions $Y_l^m$ with different ls for a given m. For low-forcing frequency, there occurs frequency resonance between the forcing and the g- and r-modes in the envelope and inertial modes in the core. We find that the resonance enhances the tidal torque, and that the resonance with the g- and r-modes produces broad peaks and that with the inertial modes very sharp peaks, depending on the magnitude of the non-adiabatic effects associated with the oscillation modes. We also find that the behaviour of the tidal torque as a function of the forcing frequency (or period) is different between prograde and retrograde forcing, particularly for long forcing periods because the r-modes, which have long periods, exist only on the retrograde side.


2019 ◽  
Vol 624 ◽  
pp. A17 ◽  
Author(s):  
P. Auclair-Desrotour ◽  
J. Leconte ◽  
C. Mergny

Context. Thermal atmospheric tides have a strong impact on the rotation of terrestrial planets. They can lock these planets into an asynchronous rotation state of equilibrium. Aims. We aim to characterize the dependence of the tidal torque resulting from the semidiurnal thermal tide on the tidal frequency, the planet orbital radius, and the atmospheric surface pressure. Methods. The tidal torque was computed from full 3D simulations of the atmospheric climate and mean flows using a generic version of the LMDZ general circulation model in the case of a nitrogen-dominated atmosphere. Numerical results are discussed with the help of an updated linear analytical framework. Power scaling laws governing the evolution of the torque with the planet orbital radius and surface pressure are derived. Results. The tidal torque exhibits (i) a thermal peak in the vicinity of synchronization, (ii) a resonant peak associated with the excitation of the Lamb mode in the high frequency range, and (iii) well defined frequency slopes outside these resonances. These features are well explained by our linear theory. Whatever the star–planet distance and surface pressure, the torque frequency spectrum – when rescaled with the relevant power laws – always presents the same behaviour. This allows us to provide a single and easily usable empirical formula describing the atmospheric tidal torque over the whole parameter space. With such a formula, the effect of the atmospheric tidal torque can be implemented in evolutionary models of the rotational dynamics of a planet in a computationally efficient, and yet relatively accurate way.


2019 ◽  
Vol 485 (4) ◽  
pp. 5244-5255 ◽  
Author(s):  
Pablo López ◽  
Manuel E Merchán ◽  
Dante J Paz

2019 ◽  
Vol 82 ◽  
pp. 81-90
Author(s):  
P. Auclair-Desrotour ◽  
J. Laskar ◽  
S. Mathis

Atmospheric tides can have a strong impact on the rotational dynamics of planets. They are of most importance for terrestrial planets located in the habitable zone of their host star, where their competition with solid tides is likely to drive the body towards non-synchronized rotation states of equilibrium, as observed in the case of Venus. Contrary to other planetary layers, the atmosphere is sensitive to both gravitational and thermal forcings, through a complex dynamical coupling involving the effects of Coriolis acceleration and characteristics of the atmospheric structure. These key physics are usually not taken into account in modelings used to compute the evolution of planetary systems, where tides are described with parametrised prescriptions. In this work, we present a new ab initio modeling of atmospheric tides adapting the theory of the Earth’s atmospheric tides (Chapman & Lindzen 1970) to other terrestrial planets. We derive analytic expressions of the tidal torque, as a function of the tidal frequency and parameters characterizing the internal structure (e.g. the Brunt-Väisälä frequency, the radiative frequency, the pressure heigh scale). We show that stratification plays a key role, the tidal torque being strong in the case of convective atmospheres (i.e. with a neutral stratification) and weak in case of atmosphere convectively stable. In a second step, the model is used to determine the non-synchronized rotation states of equilibrium of Venus-like planets as functions of the physical parameters of the system. These results are detailed in Auclair-Desrotour et al. (2016a) and Auclair-Desrotour et al. (2016b).


2018 ◽  
Vol 609 ◽  
pp. A118 ◽  
Author(s):  
P. Auclair-Desrotour ◽  
S. Mathis ◽  
J. Laskar

Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims. The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods. We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results. In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions. Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally driven toward synchronous or asynchronous final rotation rates. The domain of applicability of the traditional approximation is rigorously constrained by calculations.


Sign in / Sign up

Export Citation Format

Share Document