scholarly journals LONGEVITY AND HIGHEST-ENERGY COSMIC RAYS

1999 ◽  
Vol 08 (01) ◽  
pp. 117-122 ◽  
Author(s):  
PAUL H. FRAMPTON ◽  
BETTINA KESZTHELYI ◽  
Y. JACK NG

It is proposed that the highest energy ~1020 eV cosmic ray primaries are protons which are decay products of a superheavy particle, G. The protons may be decay products either directly of a nearby (galactic) Gor of a long-lived intermediate particle X which arises from decay of a distant (cosmological) G, then decays in or near our Galaxy. Such scenarios can occur in e.g. SU(15) grand unification and in some preon models.

2002 ◽  
Vol 17 (33) ◽  
pp. 2179-2188 ◽  
Author(s):  
A. H. CAMPOS ◽  
L. L. LENGRUBER ◽  
R. ROSENFELD ◽  
H. C. REIS ◽  
R. SATO

Top-down models for the origin of ultra high energy cosmic rays (UHECR's) propose that these events are the decay products of relic superheavy metastable particles, usually called X particles. These particles can be produced in the reheating period following the inflationary epoch of the early Universe. We obtain constraints on some parameters such as the lifetime and direct couplings of the X-particle to the inflaton field from the requirement that they are responsible for the observed UHECR flux.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2004 ◽  
Vol 218 ◽  
pp. 57-64
Author(s):  
Jacco Vink

The two main aspects of supernova remnant research addressed in this review are: I. What is our understanding of the progenitors of the observed remnants, and what have we learned from these remnants about supernova nucleosynthesis? II. Supernova remnants are probably the major source of cosmic rays. What are the recent advances in the observational aspects of cosmic ray acceleration in supernova remnants?


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


Cosmic ray measurements on mountains are limited in general to altitudes below about 4000 meters. Above this height Regener has made successful use of small balloons carrying self-recording apparatus, and occasional flights have been made with manned balloons by Piccard, Cosyns, and by American workers. Balloon experiments are, however, hardly practicable in this country, so we decided to investigate cosmic rays, and in particular the production of showers, using an aeroplane. Facilities for flying to a height of about 10 km. Were generously provided by the Air Ministry. Apparatus Two independent sets of three tube counters were used in conjunction with the usual coincidence counting circuits. The counters could be arranged in a vertical line to record vertical penetrating particles, or in a triangle to record showers. The triple coincidences were recorded by telephone counters which were photographed at intervals together with a clock and aneroid barometer. The detailed design of the apparatus required some consideration since the aeroplane available (the Vickers Vespa machine used for high altitude experiments at the Royal Aircraft Establishment) had an open observer’s cockpit in which the counting set had to be installed.


1968 ◽  
Vol 46 (10) ◽  
pp. S823-S824
Author(s):  
S. N. Vernov ◽  
A. N. Charakhchyan ◽  
T. N. Charakhchyan ◽  
Yu. J. Stozhkov

The results of the analysis of data obtained from measurements carried out by means of regular stratospheric launchings of cosmic-ray radiosondes over the Murmansk region and the Antarctic observatory in Mirny in 1963–66 are presented. The problem of the anisotropy of the primary component of low-energy cosmic rays and of temperature effects on the cosmic-ray intensity in the atmosphere are discussed.


A continuous record of the ionization current produced by cosmic rays in an ionization chamber shows, if the recording apparatus is sufficiently sensitive, occasional relatively large momentary currents superposed on the normal fluctuations. These large momentary currents are generally called “bursts”. They were first discovered by Hoffmann. It has often been assumed that the bursts are of the same nature as the showers which are observed either in the Wilson chamber or by means of three or more coincidence counters; but so far no conclusive evidence, particularly for the larger bursts, has been reported in support of this assumption.


2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

<p>We present the first results of modelling of the short-living cosmogenic isotope <sup>7</sup>Be production, deposition, and transport using the chemistry-climate model SOCOLv<sub>3.0</sub> aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of <sup>7</sup>Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of <sup>7</sup>Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope <sup>7</sup>Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. </p>


Sign in / Sign up

Export Citation Format

Share Document