scholarly journals The neutron within the deuteron as a surrogate for neutron-induced reactions

2019 ◽  
Vol 28 (12) ◽  
pp. 1950109 ◽  
Author(s):  
C. A. Bertulani ◽  
L. F. Canto ◽  
M. S. Hussein ◽  
Shubhchintak ◽  
T. V. Nhan Hao

We propose the use of neutron poisons in reactions induced by radioactive beams as a test of theoretical models aiming to relate neutron capture in nuclei with neutron surrogate reactions such as ([Formula: see text]) reactions. We exploit the approximations necessary to obtain a direct relation between the two reactions: surrogate versus neutron capture. We also show how this is intimately related to the momentum distribution of the neutron within the deuteron. The models we use are based on the theory of inclusive breakup reactions commonly employed in the treatment of incomplete fusion and surrogate method. Such theories were developed in the 1980s by Ichimura, Austern and Vincent [Phys. Rev. C 32 (1985) 431], Udagawa and Tamura [Phys. Rev. C 24 (1981) 1348] and Hussein and McVoy [Nucl. Phys. A 445 (1985) 124]. We use these theories to derive an expression for the proton yield in the reaction [Formula: see text]. The capture reaction [Formula: see text] is then extracted using reasonable approximations. By recalling an old method proposed by Serber [Phys. Rev. 80 (1950) 1098; Proc. Roy. Soc. A 208 (1951) 559] we explain how the momentum distribution of neutrons within the deuteron will depend on the short-range dependence of the nucleon–nucleon force. The relevance of our work to nucleosynthesis in the rapid neutron capture process is emphasized.

2012 ◽  
Vol 21 (09) ◽  
pp. 1230008 ◽  
Author(s):  
H. SADEGHI

Different theoretical models for two- and three-body electromagnetic currents are constructed using meson-exchange mechanisms and minimal substitution in the momentum dependence of two- and three-nucleon interactions. We review the use of effective field theory (EFT) to compute electromagnetic reactions in three-nucleon systems at very low energies. We first explain how EFT theory can be extended to incorporate the photon into the three-nucleon systems when also a three-nucleon force is acting. We also explain the predictions of the resulting EFT for neutron–deuteron radiative capture process at very low energies. In this work, a number of low-energy photonuclear observables, including neutron–deuteron radiative capture reactions and triton photodisintegration, are calculated in order to make a comparative study of the pion-less EFT results with the models based on the realistic Argonne v18(AV18) two-nucleon and Urbana IX or Tucson–Melbourne three-nucleon interactions. The calculated cross-section of neutron–deuteron radiative capture and photon polarization parameter of 3 H are in satisfactory agreement with the available experimental data.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 203
Author(s):  
Peter Shternin ◽  
Isaac Vidaña

We consider transport properties of the hypernuclear matter in neutron star cores. In particular, we calculate the thermal conductivity, the shear viscosity, and the momentum transfer rates for npΣ−Λeμ composition of dense matter in β–equilibrium for baryon number densities in the range 0.1–1 fm−3. The calculations are based on baryon interactions treated within the framework of the non-relativistic Brueckner-Hartree-Fock theory. Bare nucleon-nucleon (NN) interactions are described by the Argonne v18 phenomenological potential supplemented with the Urbana IX three-nucleon force. Nucleon-hyperon (NY) and hyperon-hyperon (YY) interactions are based on the NSC97e and NSC97a models of the Nijmegen group. We find that the baryon contribution to transport coefficients is dominated by the neutron one as in the case of neutron star cores containing only nucleons. In particular, we find that neutrons dominate the total thermal conductivity over the whole range of densities explored and that, due to the onset of Σ− which leads to the deleptonization of the neutron star core, they dominate also the shear viscosity in the high density region, in contrast with the pure nucleonic case where the lepton contribution is always the dominant one.


2021 ◽  
Author(s):  
Jose Orce ◽  
Balaram Dey ◽  
Cebo Ngwetsheni ◽  
Brenden Lesch ◽  
Andile Zulu ◽  
...  

Abstract The abundance of heavy elements above iron through the rapid neutron capture process or r-process is intimately related to the competition between neutron capture and $\beta$ decay rates, which ultimately depends on the binding energy of atomic nuclei. The well-known Bethe-Weizsacker semi-empirical mass formula describes the binding energy of ground states in nuclei with temperatures of T~0 MeV, where the nuclear symmetry energy saturates between 23-26 MeV. Here we find a larger saturation energy of ~30 MeV for nuclei at T~0.7-1.3 MeV, which corresponds to the typical temperatures where seed elements are created during the cooling down of the ejecta following neutron-star mergers and collapsars. This large symmetry energy yields a reduction of the binding energy per nucleon for neutron-rich nuclei; hence, the close in of the neutron dripline, where nuclei become unbound. This finding constrains exotic paths in the nucleosynthesis of heavy elements -- as supported by microscopic calculations of radiative neutron-capture rates -- and further supports the universal origin of heavy elements, as inferred from the abundances in extremely metal-poor stars and meteorites.


1970 ◽  
Vol 32 (7) ◽  
pp. 591-595 ◽  
Author(s):  
D. Gogny ◽  
P. Pires ◽  
R. De Tourreil

Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. 742-745
Author(s):  
A. Wallner ◽  
M. B. Froehlich ◽  
M. A. C. Hotchkis ◽  
N. Kinoshita ◽  
M. Paul ◽  
...  

Half of the chemical elements heavier than iron are produced by the rapid neutron capture process (r-process). The sites and yields of this process are disputed, with candidates including some types of supernovae (SNe) and mergers of neutron stars. We search for two isotopic signatures in a sample of Pacific Ocean crust—iron-60 (60Fe) (half-life, 2.6 million years), which is predominantly produced in massive stars and ejected in supernova explosions, and plutonium-244 (244Pu) (half-life, 80.6 million years), which is produced solely in r-process events. We detect two distinct influxes of 60Fe to Earth in the last 10 million years and accompanying lower quantities of 244Pu. The 244Pu/60Fe influx ratios are similar for both events. The 244Pu influx is lower than expected if SNe dominate r-process nucleosynthesis, which implies some contribution from other sources.


2020 ◽  
Vol 498 (3) ◽  
pp. 3549-3559
Author(s):  
Aldo Mura-Guzmán ◽  
D Yong ◽  
C Abate ◽  
A Karakas ◽  
C Kobayashi ◽  
...  

ABSTRACT We present new fluorine abundance estimations in two carbon enhanced metal-poor (CEMP) stars, HE 1429−0551 and HE 1305+0007. HE 1429−0551 is also enriched in slow neutron-capture process (s-process) elements, a CEMP-s, and HE 1305+0007 is enhanced in both, slow and rapid neutron-capture process elements, a CEMP-s/r. The F abundances estimates are derived from the vibration–rotation transition of the HF molecule at 23358.6 Å  using high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) at the 4-m class Lowell Discovery Telescope. Our results include an F abundance measurement in HE 1429−0551 of A(F) = +3.93 ([F/Fe] = +1.90) at [Fe/H] = −2.53, and an F upper limit in HE 1305+0007 of A(F) < +3.28 ([F/Fe] < +1.00) at [Fe/H] = −2.28. Our new derived F abundance in HE 1429−0551 makes this object the most metal-poor star where F has been detected. We carefully compare these results with literature values and state-of-the-art CEMP-s model predictions including detailed asymptotic giant branch (AGB) nucleosynthesis and binary evolution. The modelled fluorine abundance for HE 1429−0551 is within reasonable agreement with our observed abundance, although is slightly higher than our observed value. For HE 1429−0551, our findings support the scenario via mass transfer by a primary companion during its thermally pulsing phase. Our estimated upper limit in HE 1305+0007, along with data from the literature, shows large discrepancies compared with AGB models. The discrepancy is principally due to the simultaneous s- and r-process element enhancements which the model struggles to reproduce.


2018 ◽  
Vol 184 ◽  
pp. 01004
Author(s):  
Sergio Cristallo

Stars are marvellous caldrons where all the elements of the Universe (apartfrom hydrogen and helium) have been synthesized. The solar system chemical distri-butionis the result of many pollution episodes from already extinct stellar generations, occurred at different epochs before the Sun formation. Main nucleosynthesis channels re-sponsiblefor the formation of heavy elements are the rapid neutron capture process (ther-process) and the slow neutron capture process (the s-process). Hereafter, I will describethe theory of the s-process and the stellar sites where it is active.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
K. M. Hanna ◽  
S. H. M. Sewailem ◽  
R. Hussien ◽  
L. I. Abou-Salem ◽  
Asmaa G. Shalaby

The interaction of nucleon-nucleon (NN) has certain physical characteristics, indicated by nucleon, and meson degrees of freedom. The main purpose of this work is calculating the ground-state energies of  12H and  24He through the two-body system with the exchange of mesons (π, σ, and ω) that mediated between two nucleons. This paper investigates the NN interaction based on the quasirelativistic decoupled Dirac equation and self-consistent Hartree-Fock formulation. We construct a one-boson exchange potential (OBEP) model, where each nucleon is treated as a Dirac particle and acts as a source of pseudoscalar, scalar, and vector fields. The potential in the present work is analytically derived with two static functions of meson, the single-particle energy-dependent (SPED) and generalized Yukawa (GY) functions; the parameters used in meson functions are just published ones (mass, coupling constant, and cutoff parameters). The theoretical results are compared to other theoretical models and their corresponding experimental data; one can see that the SPED function gives more satisfied agreement than the GY function in the case of the considered nuclei.


Sign in / Sign up

Export Citation Format

Share Document