scholarly journals LOCAL CONTROL OF SOUND IN STOCHASTIC DOMAINS BASED ON FINITE ELEMENT MODELS

2011 ◽  
Vol 19 (02) ◽  
pp. 205-219 ◽  
Author(s):  
TUOMAS AIRAKSINEN ◽  
ERKKI HEIKKOLA ◽  
JARI TOIVANEN

A numerical method for optimizing the local control of sound in a stochastic domain is developed. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations is modeled using the finite element method in the frequency domain. The optimal local noise control signals minimizing the least square of the pressure field in the silent region are given by the solution of a quadratic optimization problem. The developed method computes a robust local noise control in the presence of randomly varying parameters such as variations in the acoustic space. Numerical examples consider the noise experienced by a vehicle driver with a varying posture. In a model problem, a significant noise reduction is demonstrated at lower frequencies.

2005 ◽  
Vol 127 (6) ◽  
pp. 1207-1210
Author(s):  
R. Padmaja ◽  
R. Ravinder Rao ◽  
B. Kotiveerachari ◽  
P. B. Godbole

The present work is aimed at evaluating different ways in which a given joint can be analyzed using the Finite Element Method. The bolt is modeled using line elements (link) or area elements (continuum) and a comparative evaluation is carried out. Each of these types is further subdivided into three categories viz., plane stress, axisymmetric, and three-dimensional models. Thus a total of six models are proposed to be analyzed and compared. As the bolt shares only a small fraction of external load in a well-tightened joint, the relative flexibility of a bracket is also studied as an example in the present work. Comparing the results of these analyses it was found that the type of model used for the bolt is more important than the type of analysis. This aspect is probed further to find the essential difference between bolt as link and bolt as continuum. The analysis is carried out using ANSYS, which enables writing many parametric programs.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Author(s):  
A Meghdari ◽  
R Davoodi ◽  
F Mesbah

This paper presents an engineering analysis of shoulder dystocia (SD) in the human birth process which usually results in damaging the brachial plexus nerves and the humerus and/or clavicle bones of the baby. The goal is to study these injuries from the mechanical engineering point of view. Two separate finite element models of the neonatal neck and the clavicle bone have been simulated using eight-node three-dimensional elements and beam elements respectively. Simulated models have been analysed under suitable boundary conditions using the ‘SAP80’ finite element package. Finally, results obtained have been verified by comparing them with published clinical and experimental observations.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


Sign in / Sign up

Export Citation Format

Share Document