Design and Reliability Evaluation of Gamma-Minus Interconnection Network

Author(s):  
S. Gupta ◽  
G. L. Pahuja

Gamma Interconnection Network (GIN) is characterized as Redundant Multistage Interconnection Network (MIN) which is considered as a potential candidate for use in broadband communications. Several advancements have been made to improve Reliability indices such as Terminal Reliability (TR), Broadcast Reliability (BR) and Network Reliability (NR) of these networks. But inspite of these advancements, there are certain issues which are yet to be explored such as Complexity, Cost, Number of disjoint paths on presumption that source/destination are failure free. Most of the work done in the literature addresses TR only and less work has been done on analysis of BR and NR. In literature networks, [Formula: see text] size has been explored and no attention has been paid to bigger network sizes although reliability of bigger size network is important for parallel processing systems. In this paper, existing class of Gamma Networks has been studied extensively and modifications have been proposed in existing Gamma Network which minimizes or resolves most of the limitations mentioned above. The proposed Gamma-Minus Network has more redundant paths than other networks. Proposed Network has been compared with some recently introduced members of this class. The results show that newly proposed Gamma-Minus Network has better reliability with lowest cost and path length and provides disjoint minimal-path set for [Formula: see text] to [Formula: see text] network size. The routing used in this paper eliminates the backtracking overhead which minimizes transmission delay.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiu-Zhen Xu ◽  
Yi-Feng Niu ◽  
Can He

Most of modern technological networks that can perform their tasks with various distinctive levels of efficiency are multistate networks, and reliability is a fundamental attribute for their safe operation and optimal improvement. For a multistate network, the two-terminal reliability at demand level d, defined as the probability that the network capacity is greater than or equal to a demand of d units, can be calculated in terms of multistate minimal paths, called d-minimal paths (d-MPs) for short. This paper presents an efficient algorithm to find all d-MPs for the multistate two-terminal reliability problem. To advance the solution efficiency of d-MPs, an improved model is developed by redefining capacity constraints of network components and minimal paths (MPs). Furthermore, an effective technique is proposed to remove duplicate d-MPs that are generated multiple times during solution. A simple example is provided to demonstrate the proposed algorithm step by step. In addition, through computational experiments conducted on benchmark networks, it is found that the proposed algorithm is more efficient.


Author(s):  
Vaibhav Bisht ◽  
S. B. Singh

Shuffle Exchange Networks (SENs) are considered as an appropriate interconnection network because they consist of switching elements of small size and possess a straight forward and simple configuration. In this paper, we have proposed a method for analyzing reliability of 4×4 SEN, 4×4 SEN+1 and 4×4 SEN+2. The reliability has been obtained on the basis of three indices, namely, terminal reliability, broadcast reliability and network reliability by using universal generating function (UGF) method. This study also examines effect of adding the additional stages in 4×4 shuffle exchange networks (SENs).


Author(s):  
Gaurav Khanna ◽  
Sanjay K. Chaturvedi ◽  
Sieteng Soh

Background: Several techniques are available to evaluate the two-terminal reliability (2TR) of static networks; however, the advent of dynamic networks in recent past, e.g., Delay Tolerant Networks (DTNs), has made this task extremely challenging due to their peculiar characteristics with an associated disruptive operational environment. Recently, a Cartesian product-based method has been proposed to enumerate time-stamped-minimal path sets (TS-MPS)-a precursor to compute the 2TR of such networks. However, it cannot be used to generate time-stamped-minimal cut sets (TS-MCS). TS-MCS cannot only be used as an alternative to generate 2TR but also to compute other unexplored reliability metrics in DTNs, e.g., the weakest link. Objective: To propose a novel approach to enumerate both TS-MPS and TS-MCS of a dynamic network, thereby computing the 2TR of such networks. Methods: The proposed technique converts the time aggregated graph model of a dynamic network into a Line Graph (LG) while maintaining the time-varying graph’s node reachability information. This LG is used thereafter to generate TS-MCS as well as TS-MPS to compute 2TR of the network. Results: The DTN examples are presented to show the efficacy and salient features of our algorithm to obtain 2TR of such networks. Conclusion: The terminologies and techniques used for studying/analyzing network reliability of static networks can be extended to dynamic networks as well, e.g., the notion of minimal path sets to TS-MPS or minimal cut sets to TS-MCS, to assess their network reliability-a potential area of furthering network reliability research.


Author(s):  
Xiaoling Li ◽  
Xinwei Zhou

Data security is very important in the multi-path transmission networks (MTN). Efficient data security measurement in MTN is crucial so as to ensure the reliability of data transmission. To this end, this paper presents an improved algorithm using single-single minimal path based back-up path (SSMP-BP), which is designed to ensure the data transmission when the second path is out of work. From the simulation study, the proposed algorithm has the better network reliability compared with existing double minimal path based backup path (DMP-BP) approach. It could be found that, the proposed algorithm uses less back-up paths compared with DMP-BP so that less network resources like nodes are achieved.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3202
Author(s):  
Alberto Escalera ◽  
Edgardo D. Castronuovo ◽  
Milan Prodanović ◽  
Javier Roldán-Pérez

Modern power distribution networks assume the connection of Distributed Generators (DGs) and energy storage systems as well as the application of advanced demand management techniques. After a network fault these technologies and techniques can contribute individually to the supply restoration of the interrupted areas and help improve the network reliability. However, the optimal coordination of control actions between these resources will lead to their most efficient use, maximizing the network reliability improvement. Until now, the effect of such networks with optimal coordination has not been considered in reliability studies. In this paper, DGs, energy storage and demand management techniques are jointly modelled and evaluated for reliability assessment. A novel methodology is proposed for the calculation of the reliability indices. It evaluates the optimal coordination of energy storage and demand management in order to reduce the energy-not-supplied during outages. The formulation proposed for the calculation of the reliability indices (including the modelling of optimal coordination) is described in detail. The methodology is applied to two distribution systems combining DGs, energy storage and demand management. Results demonstrate the capability of the proposed method to assess the reliability of such type of networks and emphasise the impact of the optimal coordination on reliability.


Author(s):  
Musaria Karim Mahmood ◽  
Osman Ucan ◽  
Zahraa Zaidan ◽  
Sulaiman M. Karim

<span>Network reliability is valuable in establishing a survivable communication network. Reliability evaluation algorithms are used in the design stage and during the network deployment. This work presents a new multistage hybrid technique for two-terminal reliability evaluation problem. It is based on a combination of graph reduction techniques and tie-set method. A new approach has been introduced for deducing tie-sets in a network containing both unidirectional and bi-directional edges. The proposed algorithm can be applied for both simple and complex networks without restrictions. The results confirm that new algorithm evaluates network's reliability with decreasing computing time compared to classical algorithms. The results for a case study of a 20-node network have demonstrated that the required time for reliability evaluation is decreased from (t&gt;1 hour) in the case of using a classical algorithm, to (t&lt;1 second) for the new algorithm.</span>


2021 ◽  
Vol 13 (17) ◽  
pp. 9579
Author(s):  
Mikka Kisuule ◽  
Ignacio Hernando-Gil ◽  
Jonathan Serugunda ◽  
Jane Namaganda-Kiyimba ◽  
Mike Brian Ndawula

Electricity-distribution network operators face several operational constraints in the provision of safe and reliable power given that investments for network area reinforcement must be commensurate with improvements in network reliability. This paper provides an integrated approach for assessing the impact of different operational constraints on distribution-network reliability by incorporating component lifetime models, time-varying component failure rates, as well as the monetary cost of customer interruptions in an all-inclusive probabilistic methodology that applies a time-sequential Monte Carlo simulation. A test distribution network based on the Roy Billinton test system was modelled to investigate the system performance when overloading limits are exceeded as well as when preventive maintenance is performed. Standard reliability indices measuring the frequency and duration of interruptions and the energy not supplied were complemented with a novel monetary reliability index. The comprehensive assessment includes not only average indices but also their probability distributions to adequately describe the risk of customer interruptions. Results demonstrate the effectiveness of this holistic approach, as the impacts of operational decisions are assessed from both reliability and monetary perspectives. This informs network planning decisions through optimum investments and consideration of customer outage costs.


Sign in / Sign up

Export Citation Format

Share Document