A MODEL FOR PROGRAM ERROR PREDICTION BASED ON TESTING CHARACTERISTICS AND ITS EVALUATION

Author(s):  
KAZUHIRO ESAKI ◽  
MUNEO TAKAHASHI

There are two types of models for predicting software reliability at the end of testing. One is the software reliability growth model (dynamic model) based on a given set of time series data. The other is the software complexity model (static model) based on the development environmental factors which have an influence on the software reliability. As the dynamic model depends on the time factor and the test method used, its prediction accuracy does not necessarily correspond to the data of practical projects. On the other hand, the static model needs the many significant parameters to accurately predict the software reliability. However, it is very difficult to select the main factors that determine the significant parameters out of a great number of factors which affect software reliability. In order to resolve these problems, this paper proposes a model to predict the number of embedded errors in a program at the end of testing phase. This model is based on the testing characteristics such as error detection rate and test case density. The result of an experiment shows that the proposed model is more reliable than the conventional models.

1968 ◽  
Vol 8 (2) ◽  
pp. 308-309
Author(s):  
Mohammad Irshad Khan

It is alleged that the agricultural output in poor countries responds very little to movements in prices and costs because of subsistence-oriented produc¬tion and self-produced inputs. The work of Gupta and Majid is concerned with the empirical verification of the responsiveness of farmers to prices and marketing policies in a backward region. The authors' analysis of the respon¬siveness of farmers to economic incentives is based on two sets of data (concern¬ing sugarcane, cash crop, and paddy, subsistence crop) collected from the district of Deoria in Eastern U.P. (Utter Pradesh) a chronically foodgrain deficit region in northern India. In one set, they have aggregate time-series data at district level and, in the other, they have obtained data from a survey of five villages selected from 170 villages around Padrauna town in Deoria.


2012 ◽  
Vol 1 (1) ◽  
pp. 10-22
Author(s):  
Nateson C ◽  
Suganya D

The present study seeks to analyse Volatility of popular stock index SENSEX. The present study is based on the closing time series data of SENSEX covering the period from 3rd January 2000, to 30th June 2011. The year 2008 has recorded higher Volatility compared to the other years of the study. Volatility fell in the year 2009 from the high of 2008. The years after were comparatively calmer. In the year 2000, the Volatility was higher signifying enhance market activity. The overall daily Volatility for SENSEX was approximately 1.70 % while the annualized value was approximately 25%-26%. Events Reported around Daily Returns in Excess of +/-5%have also been identified.


2021 ◽  
Author(s):  
Erik Otović ◽  
Marko Njirjak ◽  
Dario Jozinović ◽  
Goran Mauša ◽  
Alberto Michelini ◽  
...  

<p>In this study, we compared the performance of machine learning models trained using transfer learning and those that were trained from scratch - on time series data. Four machine learning models were used for the experiment. Two models were taken from the field of seismology, and the other two are general-purpose models for working with time series data. The accuracy of selected models was systematically observed and analyzed when switching within the same domain of application (seismology), as well as between mutually different domains of application (seismology, speech, medicine, finance). In seismology, we used two databases of local earthquakes (one in counts, and the other with the instrument response removed) and a database of global earthquakes for predicting earthquake magnitude; other datasets targeted classifying spoken words (speech), predicting stock prices (finance) and classifying muscle movement from EMG signals (medicine).<br>In practice, it is very demanding and sometimes impossible to collect datasets of tagged data large enough to successfully train a machine learning model. Therefore, in our experiment, we use reduced data sets of 1,500 and 9,000 data instances to mimic such conditions. Using the same scaled-down datasets, we trained two sets of machine learning models: those that used transfer learning for training and those that were trained from scratch. We compared the performances between pairs of models in order to draw conclusions about the utility of transfer learning. In order to confirm the validity of the obtained results, we repeated the experiments several times and applied statistical tests to confirm the significance of the results. The study shows when, within the set experimental framework, the transfer of knowledge brought improvements in terms of model accuracy and in terms of model convergence rate.<br><br>Our results show that it is possible to achieve better performance and faster convergence by transferring knowledge from the domain of global earthquakes to the domain of local earthquakes; sometimes also vice versa. However, improvements in seismology can sometimes also be achieved by transferring knowledge from medical and audio domains. The results show that the transfer of knowledge between other domains brought even more significant improvements, compared to those within the field of seismology. For example, it has been shown that models in the field of sound recognition have achieved much better performance compared to classical models and that the domain of sound recognition is very compatible with knowledge from other domains. We came to similar conclusions for the domains of medicine and finance. Ultimately, the paper offers suggestions when transfer learning is useful, and the explanations offered can provide a good starting point for knowledge transfer using time series data.</p>


2019 ◽  
Vol 9 (7) ◽  
pp. 1487 ◽  
Author(s):  
Fei Mei ◽  
Qingliang Wu ◽  
Tian Shi ◽  
Jixiang Lu ◽  
Yi Pan ◽  
...  

Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Du ◽  
Hao Gong ◽  
Suyue Han ◽  
Peng Zheng ◽  
Bin Liu ◽  
...  

Reconstruction of realistic economic data often causes social economists to analyze the underlying driving factors in time-series data or to study volatility. The intrinsic complexity of time-series data interests and attracts social economists. This paper proposes the bilateral permutation entropy (BPE) index method to solve the problem based on partly ensemble empirical mode decomposition (PEEMD), which was proposed as a novel data analysis method for nonlinear and nonstationary time series compared with the T-test method. First, PEEMD is extended to the case of gold price analysis in this paper for decomposition into several independent intrinsic mode functions (IMFs), from high to low frequency. Second, IMFs comprise three parts, including a high-frequency part, low-frequency part, and the whole trend based on a fine-to-coarse reconstruction by the BPE index method and the T-test method. Then, this paper conducts a correlation analysis on the basis of the reconstructed data and the related affected macroeconomic factors, including global gold production, world crude oil prices, and world inflation. Finally, the BPE index method is evidently a vitally significant technique for time-series data analysis in terms of reconstructed IMFs to obtain realistic data.


Author(s):  
Zequn Wang ◽  
Yan Fu ◽  
Ren-Jye Yang ◽  
Saeed Barbat ◽  
Wei Chen

Validating dynamic engineering models is critically important in practical applications by assessing the agreement between simulation results and experimental observations. Though significant progresses have been made, the existing metrics lack the capability of managing uncertainty in both simulations and experiments, which may stem from computer model instability, imperfection in material fabrication and manufacturing process, and variations in experimental conditions. In addition, it is challenging to validate a dynamic model aggregately over both the time domain and a model input space with data at multiple validation sites. To overcome these difficulties, this paper presents an area-based metric to systemically handle uncertainty and validate computational models for dynamic systems over an input space by simultaneously integrating the information from multiple validation sites. To manage the complexity associated with a high-dimensional data space, Eigen analysis is performed for the time series data from simulations at each validation site to extract the important features. A truncated Karhunen-Loève (KL) expansion is then constructed to represent the responses of dynamic systems, resulting in a set of uncorrelated random coefficients with unit variance. With the development of a hierarchical data fusion strategy, probability integral transform is then employed to pool all the resulting random coefficients from multiple validation sites across the input space into a single aggregated metric. The dynamic model is thus validated by calculating the cumulative area difference of the cumulative density functions. The proposed model validation metric for dynamic systems is illustrated with a mathematical example, a supported beam problem with stochastic loads, and real data from the vehicle occupant restraint system.


2017 ◽  
Author(s):  
Carl R. Shapiro ◽  
Johan Meyers ◽  
Charles Meneveau ◽  
Dennice F. Gayme

Abstract. We investigate the use of wind farms to provide secondary frequency regulation for a power grid using a model-based receding horizon control framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and wake interactions, both of which play an important role in wind farm power production. In order to test the control strategy, it is implemented in a large eddy simulation (LES) model of an 84-turbine wind farm using the actuator disk turbine representation. Rotor-averaged velocity measurements at each turbine are used to provide feedback for error correction. The importance of including the dynamics of wake advection in the underlying wake model is tested by comparing the performance of this dynamic-model control approach to a comparable static-model control approach that relies on a modified Jensen model. We compare the performance of both control approaches using two types of regulation signals, "RegA'" and "RegD", which are used by PJM, an independent system operator in the Eastern United States. The poor performance of the static-model control relative to the dynamic-model control demonstrates that modeling the dynamics of wake advection is key to providing the proposed type of model-based coordinated control of large wind farms. We further explore the performance of the dynamic-model control via composite performance scores used by PJM to qualify plants for regulation. Our results demonstrate that the dynamic-model controlled wind farm consistently performs well, passing the qualification threshold for all fast-acting RegD signals. For the RegA signal, which changes over slower time scales, the dynamic-model control leads to average performance that surpasses the qualification threshold, but further work is needed to enable this controlled wind farm to achieve qualifying performance for all regulation signals.


Sign in / Sign up

Export Citation Format

Share Document