EFFECTS OF FINITE REACTION RATES ON THE KINETIC PHASE TRANSITIONS IN THE CATALYTIC OXIDATION OF CARBON MONOXIDE

2002 ◽  
Vol 09 (05n06) ◽  
pp. 1735-1739
Author(s):  
L. D. LÓPEZ-CARREÑO

Oxidation of carbon monoxide is one of the most extensively studied heterogeneous catalysis reactions, being important among other applications in automobile-emission control. Catalytic oxidation of carbon monoxide on platinum (111) surface was simulated by the Monte Carlo technique following an extended version of the model proposed by Ziff, Gulari and Barshad (ZGB). In the simulation, a simple square two-dimensional lattice of active sites replaces the surface of the catalyst. Finite reaction rates for (i) diffusion of the reactive species on the surface, (ii) reaction of a CO molecule with an oxygen atom in a nearest neighbor site, and (iii) desorption of unreacted CO molecules, have been taken into account. The produced CO 2 desorbs instantly. The average coverage of O, CO and the CO 2 production rate for a steady state configuration, as a function of the normalized CO partial pressure (P CO ), shows two kinetic phase transitions. In the ZGB model these transitions occur at P CO ≈ 0.39 and P CO ≈ 0.53. For 0.39 < P CO < 0.53 a reactive ( CO 2 production) steady state is found. Outside of the interval, the only steady state is a poisoned catalyst of pure CO or pure O. Our results show that finite reaction rates shift the values in which these phase transitions occur.

2021 ◽  
pp. 152121
Author(s):  
Daniil A. Eurov ◽  
Tatiana N. Rostovshchikova ◽  
Marina I. Shilina ◽  
Demid A. Kirilenko ◽  
Maria V. Tomkovich ◽  
...  

2017 ◽  
Vol 19 (5) ◽  
pp. 3498-3505 ◽  
Author(s):  
Kenichi Koizumi ◽  
Katsuyuki Nobusada ◽  
Mauro Boero

Reaction mechanism of CO molecules onto a Cu/CeO2 surface and morphological changes.


1982 ◽  
Vol 86 (1) ◽  
pp. 43-45 ◽  
Author(s):  
J. Den Van Berg ◽  
J. H. L. M. Brans-Brabant ◽  
A. J. van Dillen ◽  
J. C. Flach ◽  
J. W. Geus

The oxidation of carbon monoxide in equimolar mixtures (CO + O 2 ) has been studied in a well-stirred open system (0.5 dm 3 ) at vessel temperatures in the range 700-840 K, and reactant pressures up to 100 Torr ( ca . 13.3 kPa) at a mean residence time of 8.5 s. Stationary states are established and oscillatory states sustained indefinitely in this system. The effect of small quantities of added hydrogen is studied by a carefully controlled, continuous supplement to the principal reactants. Four different modes of reaction (I-IV) have been characterized, and conditions for their occurrence mapped on a reactant pressure-vessel temperature ( p - T a ) ignition diagram. Most boundaries are quite sharp, and some show evidence of hysteresis. Close to the axes, reaction is slow, non-luminous and non-oscillatory (I). Within a first broad promontory (II) reaction is accompanied by steady luminescence. Crossing the boundary is not accompanied by a step change in reaction rate, but there is a change in character from stable node (in I) to stable focus (in II). Auto-oscillatory luminescence occurs in a closed region (III) wholly within the promontory II. The effects of adding hydrogen on all these modes is to increase the reaction rates markedly and to make them non-isothermal; the boundaries between I, II and III are not as greatly affected. However, systems to which more than 0.10% H 2 have been added also display a new mode, of oscillatory ignition. This appears at first in a region (IV) of high temperatures and pressures but as more H 2 is increased its realm expands and it eventually dominates the ignition diagram, invading the region of luminescence and soon obliterating the oscillatory part completely.


Sign in / Sign up

Export Citation Format

Share Document