SOLUTION PROCESSING OF CADMIUM SULFIDE BUFFER LAYER AND ALUMINUM-DOPED ZINC OXIDE WINDOW LAYER FOR THIN FILMS SOLAR CELLS

2014 ◽  
Vol 21 (04) ◽  
pp. 1450059 ◽  
Author(s):  
MAHBOOB ALAM ◽  
MOHAMMAD ISLAM ◽  
AMINE ACHOUR ◽  
ANSAR HAYAT ◽  
BILAL AHSAN ◽  
...  

Cadmium sulfide ( CdS ) and aluminum-doped zinc oxide ( Al : ZnO ) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al : ZnO thin films were produced using chemical bath deposition (CBD) and sol–gel technique, respectively. For CBD CdS , the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12–17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS ) to ~ 3.76 eV along with a shift in the absorption edge toward ~ 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al : ZnO films prepared via spin coating of precursor sols containing 0.90–1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is ~ 2.7 × 10-4 Ω ⋅ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

Author(s):  
Wiktor Matysiak ◽  
Tomasz Tański ◽  
Marta Zaborowska

Purpose: It has been recently observed, that zinc oxide thin films are gaining much popularity, particularly in applications such as toxic gas sensors, photocatalytic materials and photovoltaic cells. Due to much better physical properties of ZnO compared to the ones of titanium dioxide (TiO2), which is currently the most used material in dye sensitized solar cells, efforts are being made to fabricate DSSCs with thin films and/or nanostructures, including nanowires, nanofibres and nanoparticles of zinc oxide. Design/methodology/approach: In this paper, zinc oxide thin films were prepared using sol-gel and spin coating methods from Zn(COO)2 x 2H2O dissolved in ethanol and acetic acid with ZnO monocrystalline nanoparticles of 0 and 10% (wt.) relative to the final concentration of produced solutions. The effect of calcination process on ZnO thin films at 600°C were examined using atomic force microscope to investigate the morphology of semiconductor coatings, infrared spectroscopy to prove the chemical structure of material. Besides, optical properties were analysed on the basis of absorbance in the function of wavelength spectra and the values of energy band gaps were studied. Findings: The topography analysis of ZnO thin films showed an increase in roughness with the increase of zinc oxide nanoparticles in the thin films material. In addition, the analysis of the optical properties of ZnO thin films showed a decrease in absorption level in the range of near-ultraviolet wavelength for the obtained layers after annealing. Research limitations/implications: It was found that ZnO thin films produced by spin coating and calcination method are a proper material for photoanode in dye-sensitized solar cells, as zinc oxide layers provide better conductivity across the photovoltaic cell. Practical implications: The results provide the possibility of production DSSCs with zinc oxide thin films as photoanode. Originality/value: The dye-sensitized solar cells based on zinc oxide photoanodes could be alternative semiconductor material to titanium dioxide, which is used in nowadays solar cells. It was estimated that ZnO, especially zinc oxide nanostructures have much better physical properties, than TiO2 structures. What is more, zinc oxide thin layers are characterized by the lower energy losses resulting from the physical properties of such nanostructures, which results in more efficient solar energy into electricity conversion.


2021 ◽  
Vol 21 (3) ◽  
pp. 1799-1803
Author(s):  
Yujin Kim ◽  
Sangmo Kim ◽  
Jeongsoo Hong ◽  
Kyung Hwan Kim

In general sputtering, material characteristics can be degraded by high-energy particles located inside the plasma owing to the thin film surface. However, facing target sputtering (FTS) can be used to produce high-quality thin films through maximum control over substrate damage and the reduction of layer damage caused by high-energy particles impacting the substrate. Transparent conductive oxides (TCOs) are being applied to a variety of technologies, including displays and solar cells. The typical transparent electrode material is indium tin oxide (ITO), which contains rare and expensive raw materials. Aluminum-doped zinc oxide (AZO) has attracted increasing attention as a substitute to ITO because it is composed of abundantly available resources and is generally inexpensive. In this study, an AZO thin film was prepared using an FTS system for heterojunction solar cells. The effects of the deposition substrate temperature on the resulting electrical conductivity, structural properties, and optical properties of the AZO thin films were examined.


2007 ◽  
Vol 544-545 ◽  
pp. 729-732 ◽  
Author(s):  
Chong Mu Lee ◽  
Young Joon Cho ◽  
Ho Jin Kim ◽  
Wang Woo Lee ◽  
Hyoun Woo Kim ◽  
...  

Influence of nitrogen and oxygen annealing atmospheres on the carrier concentration, carrier mobility, electrical resistivity and PL characteristics as well as the crystallinity of ZnO films deposited on sapphire substrates by atomic layer deposition (ALD) were compared. X-ray diffraction (XRD) and photoluminescence (PL) analyses, and Hall measurement were performed to investigate the crystallinity, optical properties and electrical properties of the ZnO thin films, respectively. The UV emission intensity for oxygen annealing is stronger than that for nitrogen annealing in the case of annealing at 600°C, but the difference decreases with the Increase of annealing temperature. The strongest UV emission is obtained by oxygen annealing at 800°C. However, from the viewpoint of electrical resistivity annealing at 1,000°C in either an oxygen or a nitrogen atmosphere is more desirable. Taking both the PL and electrical properties into consideration it may be concluded that optimum annealing condition for ZnO thin films grown on the sapphire substrate by ALD is an annealing temperature of 900°C and an annealing atmosphere of oxygen although the effects of annealing atmosphere on the optical and electrical properties are not so significant.


2011 ◽  
Vol 685 ◽  
pp. 147-151 ◽  
Author(s):  
Jin Hua Huang ◽  
Rui Qin Tan ◽  
Jia Li ◽  
Yu Long Zhang ◽  
Ye Yang ◽  
...  

Transparent conductive oxides are key electrode materials for thin film solar cells. Aluminum doped zinc oxide has become one of the most promising transparent conductive oxide (TCO) materials because of its excellent optical and electrical properties. In this work, aluminum doped zinc oxide thin films were prepared using RF magnetron sputtering of a 4 at% ceramic target. The thermal stability of aluminum doped zinc oxide thin films was studied using various physical and structural characterization methods. It was observed that the electrical conductivity of aluminum doped zinc oxide thin films deteriorated rapidly and unevenly when it was heated up to 350 °C. When the aluminum doped zinc oxide thin films were exposed to UV ozone for a short time before heating up, its thermal stability and large area homogeneity were significantly improved. The present work provided a novel method for improving the durability of aluminum doped zinc oxides as transparent conductive electrodes in thin film solar cells.


2021 ◽  
Vol 47 (2) ◽  
pp. 637-647
Author(s):  
Emmanuel R Ollotu ◽  
Nuru R Mlyuka ◽  
Margaret E Samiji

This work investigated the potential to achieve zinc oxide (ZnO) films for Cu2ZnSnS4 (CZTS) solar cells window layer at controlled annealing conditions as a potential approach to address elemental inter-diffusion in CZTS solar cells. This involved rapid thermal annealing (RTA) of room-temperature oxygenated DC sputtered zinc thin films in an ambient of nitrogen gas at different temperatures. Structural, morphological, optical, and electrical properties of these films were determined by X-ray diffractometer, Scanning Electron Microscopy, Ultraviolet-visible-near infrared spectrophotometer, and Hall Effect measurement, respectively. ZnO phases were observed after annealing the films over 150 °C. The films’ grains sizes improved with increasing RTA temperature. An exponential decrease in these films’ resistivity was observed with increasing RTA temperature attaining the lowest value at 300 °C. The bandgap and average solar transmittance of the films increased with increasing RTA temperature achieving values that are potential for applications in CZTS solar cells window layer at RTA temperatures beyond 200 °C. Keywords: Sputtering; Rapid thermal annealing; Zinc oxide; Structural; Opt-electrical


Materials ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 953 ◽  
Author(s):  
Jianping Ao ◽  
Rui Fu ◽  
Ming-Jer Jeng ◽  
Jinlian Bi ◽  
Liyong Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document