STUDY ON PROPERTIES OF CoNi FILMS WITH Mn DOPING PREPARED BY MAGNETIC FIELDS INDUCED CODEPOSITION TECHNOLOGY

2018 ◽  
Vol 25 (01) ◽  
pp. 1850037 ◽  
Author(s):  
LIANG GANG ◽  
YUNDAN YU ◽  
HONGLIANG GE ◽  
GUOYING WEI ◽  
LI JIANG ◽  
...  

Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1[Formula: see text]T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1[Formula: see text]T magnetic field was induced during plating process.

The measurement of the vertical component of the earth’s magnetic field is a less simple operation than that of the horizontal component. The horizontal field measurements are on a satisfactory basis, whether made by the swinging magnet method, or by the more recently developed electric magnetometers, in which known magnetic fields may be provided by means of known currents flowing through coils of known dimensions.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17051-17057
Author(s):  
Anna Eichler-Volf ◽  
Yara Alsaadawi ◽  
Fernando Vazquez Luna ◽  
Qaiser Ali Khan ◽  
Simon Stierle ◽  
...  

PS/CoPd Janus particles respond very sensitively to application of low external magnetic fields. Owing to the magnetic properties, the PS/CoPd particles may be used, for example, to sense the presence of weak magnetic fields as micro-magnetometers.


Geophysics ◽  
1951 ◽  
Vol 16 (3) ◽  
pp. 431-449 ◽  
Author(s):  
L. B. Slichter

An interpretation problem in electromagnetic prospecting is discussed. A flat earth in which the three electrical properties of material vary only with depth is subjected to an alternating inducing field produced by a dipole above the surface with axis perpendicular to the surface. Observations of the horizontal or of the vertical component of the magnetic intensity at the ground’s surface are supposed to be available at all distances. From these observations solutions for the three unknown functions are developed. When the magnetic permeability is variable, the solutions for the permeability and dielectric functions require observations at two different frequencies. The conductivity function may be found from observations at a single frequency. It is shown that the horizontal and vertical components of the magnetic field intensity are mutually dependent in the region above the ground’s surface; and formulae independent of the ground’s characteristics are deduced for expressing [Formula: see text] in terms of [Formula: see text], and vice‐versa. Here [Formula: see text] denotes a plane coincident with or above and parallel to, the earth’s surface.


Magnetostriction may be defined in general as the change of shape of a substance when it is magnetised. The phenomenon may originate from various causes, but there is one which appears to us to be of major importance. From our present conceptions of the origin of cohesion between the atoms forming a crystal lattice it appears that a considerable part of this cohesion is due to forces of electrodynamical origin; we may therefore expect to influence these forces by means of a magnetic field, and thus produce a change of shape of the body. In ferromagnetic substances magnetostriction is easily observed in ordinary magnetic fields and a number of theoretical investigations have been carried out to explain the general aspects of the phenomenon. With para- and diamagnetic substances, however, no magnetostriction has been observed.


The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.


2020 ◽  
Vol 638 ◽  
pp. A28 ◽  
Author(s):  
Jan Jurčák ◽  
Markus Schmassmann ◽  
Matthias Rempel ◽  
Nazaret Bello González ◽  
Rolf Schlichenmaier

Context. Analyses of sunspot observations revealed a fundamental magnetic property of the umbral boundary: the invariance of the vertical component of the magnetic field. Aims. We analyse the magnetic properties of the umbra-penumbra boundary in simulated sunspots and thus assess their similarity to observed sunspots. We also aim to investigate the role of the plasma β and the ratio of kinetic to magnetic energy in simulated sunspots in the convective motions because these quantities cannot be reliably determined from observations. Methods. We used a set of non-gray simulation runs of sunspots with the MURaM code. The setups differed in terms of subsurface magnetic field structure and magnetic field boundary imposed at the top of the simulation domain. These data were used to synthesize the Stokes profiles, which were then degraded to the Hinode spectropolarimeter-like observations. Then, the data were treated like real Hinode observations of a sunspot, and magnetic properties at the umbral boundaries were determined. Results. Simulations with potential field extrapolation produce a realistic magnetic field configuration on the umbral boundaries of the sunspots. Two simulations with a potential field upper boundary, but different subsurface magnetic field structures, differ significantly in the extent of their penumbrae. Increasing the penumbra width by forcing more horizontal magnetic fields at the upper boundary results in magnetic properties that are not consistent with observations. This implies that the size of the penumbra is given by the subsurface structure of the magnetic field, that is, by the depth and inclination of the magnetopause, which is shaped by the expansion of the sunspot flux rope with height. None of the sunspot simulations is consistent with the observed properties of the magnetic field and the direction of the Evershed flow at the same time. Strong outward-directed Evershed flows are only found in setups with an artificially enhanced horizontal component of the magnetic field at the top boundary that are not consistent with the observed magnetic field properties at the umbra-penumbra boundary. We stress that the photospheric boundary of simulated sunspots is defined by a magnetic field strength of equipartition field value.


Author(s):  
Robert E. Newnham

In this chapter we deal with a number of magnetic properties and their directional dependence: pyromagnetism, magnetic susceptibility, magnetoelectricity, and piezomagnetism. In the course of dealing with these properties, two new ideas are introduced: magnetic symmetry and axial tensors. Moving electric charge generates magnetic fields and magnetization. Macroscopically, an electric current i flowing in a coil of n turns per meter produces a magnetic field H = ni amperes/meter [A/m]. On the atomic scale, magnetization arises from unpaired electron spins and unbalanced electronic orbital motion. The weber [Wb] is the basic unit of magnetic charge m. The force between two magnetic charges m1 and m2 is where r is the separation distance and μ0 (=4π×10−7 H/m) is the permeability of vacuum. In a magnetic field H, magnetic charge experiences a force F = mH [N]. North and south poles (magnetic charges) separated by a distance r create magnetic dipole moments mr [Wb m]. Magnetic dipole moments provide a convenient way of picturing the atomistic origins arising from moving electric charge. Magnetization (I) is the magnetic dipole moment per unit volume and is expressed in units of Wb m/m3 = Wb/m2. The magnetic flux density (B = I + μ0H) is also in Wb/m2 and is analogous to the electric displacement D. All materials respond to magnetic fields, producing a magnetization I = χH, and a magnetic flux density B = μH where χ is the magnetic susceptibility and μ is the magnetic permeability. Both χ and μ are in henries/m (H/m). The permeability μ = χ + μ0 and is analogous to electric permittivity. χ and μ are sometimes expressed as dimensionless quantities (x ̅ and μ ̅ and ) like the dielectric constant, where = x ̅/μ0 and = μ ̅/μ0. Other magnetic properties will be defined later in the chapter. A schematic view of the submicroscopic origins of magnetic phenomena is presented in Fig. 14.1. Most materials are diamagnetic with only a weak magnetic response induced by an applied magnetic field.


Author(s):  
Philip Judge

‘Spots and magnetic fields’ explores sunspot behaviour. We have known since 1908 that sunspots are magnetic, but why does the Sun form them at all? Is the Sun extraordinary in this, or is its behaviour in line with other stars? The Sun’s magnetic field is generated by a solar dynamo, which can be partly explained by magnetohydrodynamics (MHD)—the study of the magnetic properties and behaviour of electrically conducting fluids—however, there is no full consensus on the solar dynamo. In the 1960s the new science of helioseismology gave us insights into the Sun’s interior rotation, but we are unable to make truly critical observations in the solar interior.


2020 ◽  
Vol 8 (A) ◽  
pp. 24-36
Author(s):  
Mark Christopher Arokiaraj ◽  
Aleksandr Liubimtcev

BACKGROUND: Multifunctional nanoparticles are known for their wide range of biomedical applications. Controlling the magnetic properties of these nanoparticles is imperative for various applications, including therapeutic angiogenesis. AIM: The study was performed to evaluate the magnetic properties and their control mechanisms by the external magnetic field. METHODS: A100 nm magnetic nanoparticle was placed in the magnetic field, and parametrically, the magnet field strength and distance were evaluated. Various models of magnetic strength and disposition were evaluated. Magnetic flux density, force/weight, and magnetic gradient strength were the parameters evaluated in the electromagnetic computational software. RESULTS: The seven-coil method with three centrally placed coils as Halbach array, and each coil with a flux density of 7 Tesla, and with a coil dimension of 20 cm × 20 cm (square model) of each coil showed a good magnetic strength and force/weight parameters in a distance of 15 cm from the centrally placed coil. The particles were then evaluated for their motion characteristics in saline. It showed good displacement and acceleration properties. After that, the particles were theoretically assessed in a similar mathematical model after parametrically correcting the drag force. After the application of high drag forces, the particles showed adequate motion characteristics. When the particle size was reduced further, the motion characteristics were preserved even with high drag forces. CONCLUSION: There is potential for a novel method of controlling multifunctional magnetic nanoparticles using high magnetic fields. Further studies are required to evaluate the motion characteristics of these particles in vivo and in vitro.


2007 ◽  
Vol 21 (22) ◽  
pp. 3877-3887 ◽  
Author(s):  
AI-YUAN HU ◽  
YUAN CHEN

The two-dimensional spin-1/2 anisotropic Heisenberg ferromagnet is investigated in coexisting transverse and longitudinal magnetic fields. Using the Green function treatment, the magnetization and susceptibility are studied as a function of temperature, anisotropy and magnetic fields. The effects of exchange anisotropy and transverse magnetic field on the magnetic properties of the system are discussed.


Sign in / Sign up

Export Citation Format

Share Document