An Experimental Study on Milling Al2O3 Ceramics with Abrasive Waterjet

2007 ◽  
Vol 339 ◽  
pp. 500-504 ◽  
Author(s):  
Yan Xia Feng ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Rong Guo Hou ◽  
X.Y. Lu

The machining performance of Al2O3 ceramics is studied by abrasive waterjet (AWJ) milling experiment. The machined surface characteristics and the effect of process parameters on machined surface quality are analyzed. The results showed that the nozzle traverse speed and traverse feed have a strong effect on the machined surface quality. The effect of process parameters on material volume removal rate and the milling depth is also researched. The results indicated that the material volume removal rate and the milling depth would be increased at the milling conditions of higher water pressure and bigger standoff distance. However, the milling depth will decrease at the milling conditions of higher traverse speed and higher traverse feed, and the material volume removal rate has a complex variation.

2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


Author(s):  
Rishi Pahuja ◽  
M. Ramulu ◽  
M. Hashish

Fiber Metal Laminates (FML) are one of the most advanced engineered materials used in aerospace industry. The combination of metallic sheets interspersed in composite laminates in one hybrid material system provides higher impact and corrosion resistance when compared with their monolithic counterparts. However, due to the difference in machining responses for different material phases, conventional machining often induce damages and defects, affecting the cost and structural performance of the part. This research study investigates the machinability of thermoplastic Titanium Graphite (TiGr) FML. The feasibility and machinability of contouring thick (7.6 mm–10.5 mm) TiGr through Abrasive Waterjet (AWJ) process was studied in terms of machined kerf characteristics — taper ratio and surface quality. The effect of a wide range of process parameters was investigated such as geometric variables (mixing tube aspect ratio and orifice bore size), kinetic variables (water pressure, jet traverse speed) and abrasive load ratio on the machining quality. Predictive mathematical regression models were developed through Analysis of Variance (ANOVA) in order to optimize the process. Alongside, machined surface was examined to inspect the topological characteristics, material removal mechanism, and machining induced damage (micro-defects) and distortion through Surface Profilometry, Scanning electron and optical microscopy. A comparison was drawn between conventional and AWJ trimming of TiGr to demonstrate the superiority and high speed machining of AWJ with less damage.


2007 ◽  
Vol 329 ◽  
pp. 335-340 ◽  
Author(s):  
Yan Xia Feng ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
X.Y. Lu ◽  
Hong Tao Zhu

The surface characteristics of Si3N4 ceramics milled with abrasive waterjet milling technology is studied. The milled surface characteristics and the effect of process parameters on milled surface roughness are analyzed. The results show that the milled surface roughness ranges between 0.55 and 1.1um at the milling conditions under consideration and is changed with the change of process parameters. The milled surface roughness will be significantly decreased at the milling conditions of lower water pressure and larger lateral spacing. The effect of nozzle traverse speed on milled surface roughness is complex, but a traverse speed of 1000mm/min is the optimum speed for AWJ milling Si3N4 ceramics. The milled surface roughness first decreases then increases with an enhancement of standoff distance from 10mm to 30mm, and it also significantly decreases with the increase in abrasive mesh. Therefore, the medium standoff distance of 20mm and finer abrasive are the optimum conditions for AWJ milling Si3N4 ceramics with the process parameters under consideration.


2021 ◽  

Abstract This paper presents an experimental study of abrasive waterjet turning of an extrusion aluminum alloy (AlMg0,7Si). The aim of the paper is to determine differences of two methods from the point of view of machined surface quality and the depth of penetration, i.e., the diameter of the parts after the turning process. During the experiments, the traverse speed of the cutting head and the rotation of the turned parts were changed, other parameters, like pressure of the water, abrasive mass flow rate were kept constant. Diameter and some surface roughness parameters of the test parts were measured after the machining. On the base of experimental results, advantages, and disadvantages of two methods are explained in the paper.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1362
Author(s):  
Jennifer Milaor Llanto ◽  
Ana Vafadar ◽  
Muhammad Aamir ◽  
Majid Tolouei-Rad

Abrasive waterjet machining is applied in various industries for contour cutting of heat-sensitive and difficult-to-cut materials like austenitic stainless steel 304L, with the goal of ensuring high surface integrity and efficiency. In alignment with this manufacturing aspiration, experimental analysis and optimization were carried out on abrasive waterjet machining of austenitic stainless steel 304L with the objectives of minimizing surface roughness and maximizing material removal rate. In this machining process, process parameters are critical factors influencing contour cutting performance. Accordingly, Taguchi’s S/N ratio method has been used in this study for the optimization of process parameters. Further in this work, the impacts of input parameters are investigated, including waterjet pressure, abrasive mass flow rate, traverse speed and material thickness on material removal rate and surface roughness. The study reveals that an increasing level of waterjet pressure and abrasive mass flow rate achieved better surface integrity and higher material removal values. The average S/N ratio results indicate an optimum value of waterjet pressure at 300 MPa and abrasive mass flow rate of 500 g/min achieved minimum surface roughness and maximum material removal rate. It was also found that an optimized value of a traverse speed at 90 mm/min generates the lowest surface roughness and 150 mm/min produces the highest rate of material removed. Moreover, analysis of variance in the study showed that material thickness was the most influencing parameter on surface roughness and material removal rate, with a percentage contribution ranging 90.72–97.74% and 65.55–78.17%, respectively.


2020 ◽  
Vol 977 ◽  
pp. 130-138
Author(s):  
Hao Hao Zeng ◽  
Rong Yan ◽  
Wei Wang ◽  
Peng Le Du ◽  
Tian Tian Hu ◽  
...  

Laser-assisted milling (LAM) represents an innovative process to enhance productivity in comparison with conventional milling. The workpiece temperature in LAM not only affects the cutting performance of materials, but also the machined surface quality of the part. This paper presents a 3D transient finite element (FE) model for workpiece temperature prediction in LAM. A moving Gaussian laser heat source model is implemented as a user-defined subroutine and linked to ABAQUS. The thermal model is validated by machining AerMet100 steel under different process parameters (laser power, spindle speed and feed per tooth). Good agreement between predicted and measured workpiece temperatures indicates that the FE model is feasible. In addition, the effects of laser spot size and incident angle on workpiece temperature are analyzed based on the proposed model. This work can be further applied to optimize process parameters for controlling the machined surface quality in LAM.


2016 ◽  
Vol 1136 ◽  
pp. 113-118 ◽  
Author(s):  
Kunlapat Thongkaew ◽  
Jun Wang ◽  
Guan Heng Yeoh

An experimental investigation of the hole machining performance for woven carbon-fiber reinforced PEEK (polyetheretherketone) sheets by an abrasive waterjet (AWJ) is presented. It is shown that AWJ machining can produce good quality holes if the cutting parameters are properly selected. Plausible trends of the hole quality with respect to the process parameters are discussed. Nozzle traverse speed and intended or programmed hole size are found to have a significant effect on the diameter error of the machined holes, hole roundness, and hole wall inclination angle, while water pressure and abrasive mass flow rate exhibit an insignificant effect. An increase in the traverse speed decreases the overall hole quality, while an increase in the programmed hole diameter decreases the hole diameter error and roundness error, but increases the hole wall inclination. There is not any clear trend of the hole wall surface roughness with respect to the process parameters. Moreover, high water pressures may result in hole defects, such as entrance surface chipping, delamination, internal cracking and fiber pull-out. It is found that the optimum process parameters are about 200 MPa water pressure, 2 mm/s nozzle traverse speed and 7.0 g/s abrasive mass flow rate. Recommendations are made for compensating for the hole size deviation and empirical models are fianlly developed for these hole characteristics.


2012 ◽  
Vol 538-541 ◽  
pp. 1294-1298
Author(s):  
Dong Qiang Gao ◽  
Huan Lin ◽  
Zhong Yan Li ◽  
Jiang Miao Yi

In this paper, it is analyzes process parameters’ influence on the chip deformation, tool life, machined surface quality and the stability of cutting systems in high speed machining. It provides important reference of the choice of cutting parameters for high-speed machining user.


Sign in / Sign up

Export Citation Format

Share Document