Elastic Strain Relaxation in Si1-xGex Layers Epitaxially Grown on Si Substrates

1998 ◽  
Vol 05 (01) ◽  
pp. 133-138 ◽  
Author(s):  
I. Berbezier ◽  
B. Gallas ◽  
J. Derrien

We have investigated the elastic strain relaxation in Si 1-x Ge x layers grown by the molecular beam epitaxy (MBE) technique and in situ controlled with RHEED. Up to ≈0.8% critical lattice mismatch (about 20% Ge) uniform strained and flat layers were grown both on (111) and on (001) Si substrates. Calculations of the elastic constants evidenced a tetragonal distortion about 50% higher on (001) than on (111) in the same experimental conditions. At higher misfits (and/or thicknesses) a growth instability was evidenced only on (001) Si substrates. Si 1-x Ge x layers there displayed a surface layer undulation. On the contrary, Si 1-x Ge x layers grown on (111) Si substrates remained smooth throughout the growth up to the plastic relaxation of the layers. To determine stress fields in the Si 1-x Ge x layers, a high spatial resolution convergent beam electron diffraction (CBED) experiment was performed with a field effect analytical microscope. The CBED technique was applied to two typical cases: totally strained layer and undulated dislocation-free layer. In the latter case, CBED patterns recorded on nanometer scale areas of an undulation crest (cross-section sample) showed a gradual elastic relaxation mainly directed along the growth axis (z). Moreover a triclinic distortion of the unit cell was pointed out. These results were confirmed on a plane view sample. In conclusion, our results show that the driving force for the undulation is not the in-plane elastic relaxation since CBED experiments proved an important elastic relaxation of the (001) Si 1-x Ge x layers along the z axis. This was in agreement with the calculations of the elastic constants. We think that this could be at the origin of the undulation.

1999 ◽  
Vol 5 (S2) ◽  
pp. 208-209
Author(s):  
H. Lakner ◽  
F. Schulze-Kraasch ◽  
C. Mendorf ◽  
G. Brockt

Ternary and quaternary heterostructures from III-V-semiconductors get more and more importance in the fabrication of high-speed/high frequency devices in telecommunication systems. One of the key parameters for the performance of such devices is the crystalline quality and especially the amount of tetragonal distortion in strained layers on a nanometer scale. Strain can cause problems for the growth of such layers like relaxation induced defects, especially for the case of a high value of lattice mismatch. However, strain and the associated influence on the band structure can be used consciously for the design of tailor-made heterostructures (band gap engineering). Therefore, the spatially resolved investigation of local crystal properties (tetragonal distortion or strain and strain relaxation) is a key tool for the characterization of strained layers.Convergent beam electron diffraction (CBED) patterns and convergent beam imaging (CBIM) can be used to evaluate informations on the local crystalline structure. E.g. the position of the High Order Laue Zone (HOLZ) lines in the CBED patterns is sensitive to the local strain and therefore can be used to determine strain and relaxation effects in heterostructures quantitatively. But in practice the applicability of CBED is often limited by a lack of ultimate spatial resolution and/or of sensitivity.


2011 ◽  
Vol 278 ◽  
pp. 48-53 ◽  
Author(s):  
Alain Jacques ◽  
Laura Dirand ◽  
Jean Philippe Chateau ◽  
Thomas Schenk ◽  
Olivier Ferry ◽  
...  

The combination of high temperature (1050°C -1150°C) testing and in situ high energy X-Ray diffraction measurements using synchrotron Three Crystal Diffractometry may give various insights into the mechanical behaviour of superalloys: measurement of the lattice mismatch, order within the ' phase, elastic constants, and dynamic response to changes in the experimental conditions. Several examples are given on the rafted AM1 superalloy, resulting from experiments at the ID15A (ESRF) and BW5 (DESY) high energy beamlines.


2011 ◽  
Vol 1338 ◽  
Author(s):  
P. Rodenbach ◽  
K. Perumal ◽  
F. Katmis ◽  
W. Braun ◽  
R. Calarco ◽  
...  

ABSTRACTPhase change materials along the GeTe-Sb2Te3 pseudobinary line (GST) are grown by molecular beam epitaxy (MBE) on Si(111). The growth on (111) oriented substrates leads to greatly increased crystal quality compared to (001) oriented substrates, even for a high lattice mismatch. This holds true even for Si substrates which have a lattice mismatch of around 10% with respect to GST. The growth is controlled in situ via line of sight quadrupole mass spectrometer (QMS). Structural characterization is performed in situ by X-ray diffraction (XRD), which reveals a clear cubic symmetry of the film and a lattice slightly rhombohedrally distorted along the [111] direction.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xian Qin ◽  
Xiaogang Liu

Lanthanide-based nanocrystals with heterogeneous core-shell structures possess elastic strain due to lattice mismatch and volumetric expansion or shrinkage. Strain relaxation is usually accompanied by lattice defects, especially those point defects...


Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

Convergent-beam electron diffraction (CBED) patterns contain an immense amount of information relating to the structure of the material from which they are obtained. The analysis of these patterns has progressed to the point that under appropriate, well specified conditions, the intensity variation within the CBED discs may be understood in a quantitative sense. Rossouw et al for example, have produced numerical simulations of zone-axis CBED patterns which show remarkable agreement with experimental patterns. Spence and co-workers have obtained the structure factor parameters for lowindex reflections using the intensity variation in 2-beam CBED patterns. Both of these examples involve the use of digital data. Perhaps the most frequent use for quantitative CBED analysis is the thickness determination described by Kelly et al. This analysis has been implemented in a variety of different ways; from real-time, in-situ analysis using the microscope controls, to measurements of photographic prints with a ruler, to automated processing of digitally acquired images. The potential advantages of this latter process will be presented.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


Sign in / Sign up

Export Citation Format

Share Document