Morphology of Silver Thin Films Deposited on TiO2(110) Surfaces

1998 ◽  
Vol 05 (01) ◽  
pp. 387-392 ◽  
Author(s):  
D. Abriou ◽  
D. Gagnot ◽  
J. Jupille ◽  
F. Creuzet

The growth mode of silver films deposited at room temperature on TiO 2(110) surfaces has been examined by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum (UHV) conditions, On clean vacancy-free TiO 2(110) surfaces, 0.1-nm-thick (on average) Ag deposits form a two-dimensional (2D) layer. When the thickness of the silver overlayer is increased, 3D clusters are shown to appear while the 2D film is preserved, furthermore, the influence of surface oxygen vacancies on the growth of Ag/TiO 2(110) is evidenced by well-characterized differences in the morphology of 9-nm-thick silver deposits.

2018 ◽  
Vol 106 (4) ◽  
pp. 291-300
Author(s):  
Nidia García-González ◽  
Eduardo Ordoñez-Regil ◽  
María Guadalupe Almazán-Torres ◽  
Eric Simoni

AbstractThe interaction of salicylic acid with zirconium diphosphate surface and its reactivity toward uranium (VI) was investigated. The interaction of salicylic acid with zirconium diphosphate was firstly studied using several analytical techniques including atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The sorption of uranium (VI) onto surface-modified zirconium diphosphate was evaluated by the classical batch method at room temperature. This study showed that the uranium (VI) sorption onto zirconium diphosphate is influenced by the presence of salicylic acid. A fluorescence spectroscopy study revealed the presence of a uranyl specie onto the modified solid surface. The spectroscopy results were then used to restrain the modeling of experimental sorption data, which are interpreted in terms of a constant capacitance model using the FITEQL code. The results indicated that interaction between the uranium (VI) and the surface of zirconium diphosphate modified with salicylic acid leads to the formation of a ternary surface complex.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Serge Zhuiykov ◽  
Eugene Kats ◽  
Tomoaki Sato ◽  
Hiroshi Ikeda ◽  
Norio Miura

Quasi-two-dimensional (Q2D) Nb 2 O 5 nanoflakes were synthesized by combined sol–gel/exfoliation method with the average thickness of 10–25 nm. Their structural, surface- and electro-chemical properties were closely studied and analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), conductive atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Hossein Danafar ◽  
Marziyeh Salehiabar ◽  
Murat Barsbay ◽  
Hossein Rahimi ◽  
Mohammadreza Ghaffarlou ◽  
...  

Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA–CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA–CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA–CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA–CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


2018 ◽  
Vol 51 (2) ◽  
pp. 246-253
Author(s):  
Dev Raj Chopra ◽  
Justin Seth Pearson ◽  
Darius Durant ◽  
Ritesh Bhakta ◽  
Anil R. Chourasia

Sign in / Sign up

Export Citation Format

Share Document