scholarly journals SMOOTH PROBABILITY MEASURES AND ASSOCIATED DIFFERENTIAL OPERATORS

Author(s):  
O. G. SMOLYANOV ◽  
H. v. WEIZSÄCKER

We compare different notions of differentiability of a measure along a vector field on a locally convex space. We consider in the L2-space of a differentiable measure the analog of the classical concepts of gradient, divergence and Laplacian (which coincides with the Ornstein–Uhlenbeck operator in the Gaussian case). We use these operators for the extension of the basic results of Malliavin and Stroock on the smoothness of finite dimensional image measures under certain nonsmooth mappings to the case of non-Gaussian measures. The proof of this extension is quite straight forward and does not use any Chaos-decomposition. Finally, the role of this Laplacian in the procedure of quantization of anharmonic oscillators is discussed.

Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


1994 ◽  
Vol 7 (3) ◽  
pp. 247-267
Author(s):  
N. U. Ahmed

In this paper we discuss some recent developments in the theory of generalized functionals of Brownian motion. First we give a brief summary of the Wiener-Ito multiple Integrals. We discuss some of their basic properties, and related functional analysis on Wiener measure space. then we discuss the generalized functionals constructed by Hida. The generalized functionals of Hida are based on L2-Sobolev spaces, thereby, admitting only Hs, s∈R valued kernels in the multiple stochastic integrals. These functionals are much more general than the classical Wiener-Ito class. The more recent development, due to the author, introduces a much more broad class of generalized functionals which are based on Lp-Sobolev spaces admitting kernels from the spaces 𝒲p,s, s∈R. This allows analysis of a very broad class of nonlinear functionals of Brownian motion, which can not be handled by either the Wiener-Ito class or the Hida class. For s≤0, they represent generalized functionals on the Wiener measure space like Schwarz distributions on finite dimensional spaces. In this paper we also introduce some further generalizations, and construct a locally convex topological vector space of generalized functionals. We also present some discussion on the applications of these results.


Author(s):  
Dmitri R. Yafaev ◽  
◽  
◽  

We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by an analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy-Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators.


2009 ◽  
Vol 25 (5) ◽  
pp. 1180-1207 ◽  
Author(s):  
Norbert Christopeit

We consider weak convergence of sample averages of nonlinearly transformed stochastic triangular arrays satisfying a functional invariance principle. A fundamental paradigm for such processes is constituted by integrated processes. The results obtained are extensions of recent work in the literature to the multivariate and non-Gaussian case. As admissible nonlinear transformation, a new class of functionals (so-called locally p-integrable functions) is introduced that adapts the concept of locally integrable functions in Pötscher (2004, Econometric Theory 20, 1–22) to the multidimensional setting.


2000 ◽  
Vol 23 (5) ◽  
pp. 367-368
Author(s):  
Renata R. del-Vecchio ◽  
Dinamérico P. Pombo ◽  
Cybele T. M. Vinagre

Certain locally convex spaces of scalar-valued mappings are shown to be finite-dimensional.


Radiology ◽  
2021 ◽  
Author(s):  
Olivia Foesleitner ◽  
Alba Sulaj ◽  
Volker Sturm ◽  
Moritz Kronlage ◽  
Tim Godel ◽  
...  

Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 22 ◽  
Author(s):  
Jordi Belda ◽  
Luis Vergara ◽  
Gonzalo Safont ◽  
Addisson Salazar

Conventional partial correlation coefficients (PCC) were extended to the non-Gaussian case, in particular to independent component analysis (ICA) models of the observed multivariate samples. Thus, the usual methods that define the pairwise connections of a graph from the precision matrix were correspondingly extended. The basic concept involved replacing the implicit linear estimation of conventional PCC with a nonlinear estimation (conditional mean) assuming ICA. Thus, it is better eliminated the correlation between a given pair of nodes induced by the rest of nodes, and hence the specific connectivity weights can be better estimated. Some synthetic and real data examples illustrate the approach in a graph signal processing context.


Sign in / Sign up

Export Citation Format

Share Document