Nonlinear Equilibrium and Buckling of Fixed Shallow Arches Subjected to an Arbitrary Radial Concentrated Load

2017 ◽  
Vol 17 (08) ◽  
pp. 1750082 ◽  
Author(s):  
Yong-Lin Pi ◽  
Mark Andrew Bradford ◽  
Airong Liu

This paper is concerned with an analytical study of the nonlinear in-plane equilibrium and buckling of fixed shallow circular arches that are subjected to an arbitrary radial concentrated load. The structural behavior of an arch under an arbitrary radial concentrated load is quite different from that of an arch under a central concentrated load. It is shown that a fixed arch under an arbitrary radial concentrated load can buckle in a limit point instability mode, but cannot buckle in a bifurcation mode, which is different from that of a fixed arch under a central concentrated load that can buckle in a bifurcation mode or in a limit point instability mode. Analytical solutions for the nonlinear equilibrium path and limit point buckling load of shallow circular arches under an arbitrary radial concentrated load are derived. It is found that the load position influences the buckling load significantly and the influence is much related to the modified slenderness of the arch defined in the paper. It is also found that when the modified slenderness of an arch is smaller than a specific value, the arch has no typical buckling behavior. The analytical solution for the relationship of the specific modified slenderness with the load position is also derived. Comparisons with finite element (FE) results show that the analytical solutions can accurately predict the nonlinear equilibrium and buckling load of shallow fixed arches under an arbitrary radial concentrated load.

2021 ◽  
Vol 8 ◽  
Author(s):  
Hanwen Lu ◽  
Jinman Zhou ◽  
Zhicheng Yang ◽  
Airong Liu ◽  
Jian Zhu

Functionally graded material (FGM) arches may be subjected to a locally radial load and have different material distributions leading to different nonlinear in-plane buckling behavior. Little studies is presented about effects of the type of material distributions on the nonlinear in-plane buckling of FGM arches under a locally radial load in the literature insofar. This paper focuses on investigating the nonlinear in-plane buckling behavior of fixed FGM arches under a locally uniformly distributed radial load and incorporating effects of the type of material distributions. New theoretical solutions for the limit point buckling load and bifurcation buckling loads and nonlinear equilibrium path of the fixed FGM arches under a locally uniformly distributed radial load that are subjected to three different types of material distributions are derived. The comparisons between theoretical and ANSYS results indicate that the theoretical solutions are accurate. In addition, the critical modified geometric slendernesses of FGM arches related to the switches of buckling modes are also derived. It is found that the type of material distributions of the fixed FGM arches affects the limit point buckling loads and bifurcation buckling loads as well as the nonlinear equilibrium path significantly. It is also found that the limit point buckling load and bifurcation buckling load increase with an increase of the modified geometric slenderness, the localized parameter and the proportional coefficient of homogeneous ceramic layer as well as a decrease of the power-law index p of material distributions of the FGM arches.


2016 ◽  
Vol 22 (12) ◽  
pp. 2240-2252 ◽  
Author(s):  
Jianguo Cai ◽  
Xiaowei Deng ◽  
Jian Feng

The behavior of a bistable strut for variable geometry structures was investigated in this paper. A three-hinged arch subjected to a central concentrated load was used to study the effect of symmetric imperfections on the behavior of the bistable strut. Based on a nonlinear strain–displacement relationship, the virtual work principle was adopted to establish both the pre-buckling and buckling nonlinear equilibrium equations for the symmetric snap-through buckling mode. Then the critical load for symmetric snap-through buckling was obtained. The results show that the axial force is in compression before the arch is buckled, but it becomes in tension after buckling. Thus, the previous formulas cannot be used for the analysis of post-buckling behavior of three-hinged shallow arches. Then, the principle of virtual work was also used to establish the post-buckling equilibrium equations of the arch in the horizontal and vertical directions as well as the static boundary conditions, which are very important for bistable struts.


1991 ◽  
Vol 44 (11S) ◽  
pp. S194-S198 ◽  
Author(s):  
Anibal E. Mirasso ◽  
Luis A. Godoy

Critical and postcritical states of pseudo-conservative discrete structural systems are studied by means of a new formulation leading to a classification of critical states and to an approximate form of the postcritical equilibrium path. The nonlinear equilibrium equations are derived from the total potential energy function of a classical system, but with the addition of at least one control parameter. The follower force effect is thus included by nonlinear constraints to the equilibrium equation. The nonlinear equations are solved by perturbation techniques. Finally the theory is applied to investigate the instability of some simple mechanical models.


Author(s):  
M. Bateni ◽  
M. R. Eslami

This work presents a closed form investigation on the effect of temperature gradient on the buckling resistance of functionally graded material (FGM) shallow arches. The constituents are assumed to vary smoothly through the thickness of the arch according to the power law distribution and they are assumed to be temperature dependent. The arches subjected to the both uniform distributed radial load and central concentrated load and both boundary supports are supposed to be pinned. The temperature field is approximated by one-dimensional linear gradient through the thickness of the arch and the displacement field approximated by classical arches model. Also, Donnell type kinematics is utilized to extract the suitable strain-displacement relations for shallow arches. Adjacent equilibrium criterion is used to buckling analysis, and, critical bifurcation load is obtain in the complete presence of pre-buckling deformations. Results discloses the usefulness of using the FGM shallow arches in thermal environment because the temperature gradient enhances the buckling resistance of these structures when they are subjected to a lateral mechanical load.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chi Ma ◽  
Shi-zhong Liu ◽  
Jin Di ◽  
Rui-jie Zhang

Steel bottom plates are applied as replacements for the concrete bottom plates in order to reduce the dead weight of the composite box girders with corrugated steel webs and steel bottom plates (CSWSB). Due to the change in the material, the previous analytical calculation methods of vertical deflection of composite box girders with corrugated steel webs (CSWs) cannot be directly applied to the improved composite box girders. The shear lag warpage displacement function was derived based on the shear deformation laws of the upper flange and the bottom plates of the improved composite box girders. The equations for the calculation of the shear deformation and the additional deflection due to the shear lag of continuous and simply supported composite box girders with CSWSB under concentrated and uniformly distribution loads were derived by considering the double effects of the shear lag and the shear deformations of the top and the bottom plates with different elastic moduli. The analytical solutions of the vertical deflection of the improved composite box girders include the theory of the bending deflection of elementary beams, shear deformation of CSWs, and the additional deflection caused by the shear lag. Based on the theoretical derivation, an analytical solution method was established and the obtained vertical deflection analytical solutions were compared with the finite element method (FEM) calculation results and the experimental values. The analytical equations of vertical deflection under the two supporting conditions and the two load cases have verified the analyses and the comparisons. Further, the additional deflections due to the shear lag and the shear deformation are found to be less than 2% and 34% of the total deflection values, respectively. Moreover, under uniform distributed load conditions, the deflection value was found to be higher than that of the under concentrated load condition. It was also found that the ratio of the deflection caused by the shear lag or the shear deformation to the total deflection decreased gradually with the increase in the span width ratio. When the value of the span width ratio of a single box and single chamber composite box girder with CSWSB was equal to or greater than 8, the deflections caused by the shear lag and the shear deformation could be ignored.


1964 ◽  
Vol 8 (04) ◽  
pp. 7-21
Author(s):  
H.G. Schultz

In the paper presented the behavior of a transversely formed box-girder model subjected to pure bending is discussed, where the deck plating of the model is loaded above the buckling load. The experimental results obtained are in reasonable agreement with theoretical investigations and show the influence of fabrication initiated plate deflections on the buckling and postbuckling behavior of the deck plating clearly. A method is suggested for determining the buckling load of plates having large initial deformations.


1985 ◽  
Vol 29 (03) ◽  
pp. 162-169
Author(s):  
Theodore Kokkinis ◽  
Michael M. Bernitsas

The post-buckling behavior of heavy tubular columns following static instability under the combined action of weight, tension/compression at the top, and fluid static pressure forces in the gravity field is studied. A two-dimensional nonlinear small-strain large-deflection model of the column is derived, consisting of an integrodifferential equilibrium equation and two end rotation conditions. The equation of equilibrium is discretized using a finite-element method. An approximate solution valid in the neighborhood of the bifurcation point and an incremental solution are used to determine the secondary equilibrium path. The results of both methods are corrected by Newton-Raphson iteration. Conditions for unstable initial post-buckling behavior and existence of limit points on the secondary equilibrium path are presented. The numerical solution is applied to the problem of the elastica and is found to be in good agreement with the analytical solution. The secondary equilibrium path for a 500-m-long (1640 ft) marine drilling riser is calculated for two sets of boundary conditions and various values of the drilling mud density. The effect of the drilling mud density and the boundary conditions on the riser's post-buckling behavior is discussed.


2020 ◽  
Vol 10 (20) ◽  
pp. 7163
Author(s):  
Hiroyuki Shima

Columnar buckling is a ubiquitous phenomenon that occurs in both living things and man-made objects, regardless of the length scale ranging from macroscopic to nanometric structures. In general, analyzing the post-buckling behavior of a column requires the application of complex mathematical methods because it involves nonlinear problem solving. To complement these complex methods, this study presents simple analytical formulas for the large deflection of a heavy elastic column under combined loads. The analytical formulas relate the concentrated load acting on the tip of the column, the column’s own weight, and the deflection angle of the column through a simple mathematical expression. This can assist in obtaining an overall picture of the post-buckling behavior of heavy columns from an application point of view.


Author(s):  
Abdur Rahman Shaukat ◽  
Peng Lan ◽  
Jia Wang ◽  
Tengfei Wang

In this study, Absolute Nodal Coordinate Formulation (ANCF) in conjunction with Crisfield’s arc-length method is utilized in order to predict the nonlinear postbuckling behaviour of circular arches. The whole primary equilibrium path in load-displacement space of circular arches under central concentrated load is obtained. Three ANCF based approaches, i.e., the conventional two-dimensional fully parameterized shear deformable ANCF beam element based on the General Continuum Mechanics (GCM) approach, the same element modified by the Strain Split Method (SSM) approach and the ANCF planar Higher Order Beam Element (HOBE) with GCM approach are used. Circular arches with various geometric configurations and boundary conditions such as clamped-clamped, hinged-hinged, clamped-hinged and three-hinged arches are studied which exhibit nonlinear response in the form of snap-through, snap-back and looping phenomenon. The obtained results are compared with the analytical solutions, experimental result (where available in the literature) and numerical approximations (by using the commercially available FEM package). In this paper, the recently proposed ANCF based approaches are successfully implemented which validate and verify the utility of ANCF in nonlinear postbuckling analysis. The characteristics of the three approaches with regard to the adoptability of arc-length method are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document