A Simple Approach for Simulating the Road Surface Roughness Involved in Vehicle-Bridge Interaction Systems

2018 ◽  
Vol 18 (07) ◽  
pp. 1871009 ◽  
Author(s):  
Yao Zhang ◽  
Hai Sheng Zhao ◽  
Seng Tjhen Lie

This paper presents an idea for modeling the road surface roughness in a vehicle–bridge interaction (VBI) system, by simulating it equivalently as two external forces each acting on the two subsystems of vehicle and bridge. Such an idea can be easily included in general-purpose commercial finite element (FE) software like ABAQUS and ANSYS. Compared with frequently used coupled and uncoupled FE models, the present approach is more convenient, since it does not require any self-developed FE codes. The other advantage is that it does not require very small elements in the FE modeling, as is the case with conventional approaches for simulating the irregularity in the profile of road surface roughness, which may be computationally inefficient.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Feng ◽  
Xinjie Zhang ◽  
Konghui Guo ◽  
Fangwu Ma ◽  
Hamid Reza Karimi

The road surface roughness is the main source of kinematic excitation of a moving vehicle, which has an important influence on vehicle performance. In recent decades, random road models have been widely studied, and a four-wheel random road time domain model is usually generated based on the correlation of the four-wheel input, in which a coherence function is used to describe the coherence of the road input between the left and right wheels usually. However, during our research, there are some conditions that show that the road PSD (power spectral density) of one wheel is smaller than the other one on the same axle. Actually, it is caused by the uncorrelation between the left- and right-wheel road surface roughness. Hence, a frequency compensation algorithm is proposed to correct the deviation of the PSD of the road input between two wheels on the same axle, and it is installed in a 7-DOF vehicle dynamic study. The simulation result demonstrates the applicability of the proposed algorithm such that two-wheel road input deviation compensation has an important influence on vehicle performances, and it can be used for a control system installed in the vehicle to compensate road roughness for damper tuning in the future.


2020 ◽  
Vol 20 (10) ◽  
pp. 2042006
Author(s):  
Jiantao Li ◽  
Xinqun Zhu ◽  
Siu-Seong Law ◽  
Bijan Samali

Drive-by bridge inspection using acceleration responses of a passing vehicle has great potential for bridge structural health monitoring. It is, however, known that the road surface roughness is a big challenge for the practical application of this indirect approach. This paper presents a new two-step method for the bridge damage identification from only the dynamic responses of a passing vehicle without the road surface roughness information. A state-space equation of the vehicle model is derived based on the Newmark-[Formula: see text] method. In the first step, the road surface roughness is estimated from the dynamic responses of a passing vehicle using the dual Kalman filter (DKF). In the second step, the bridge damage is identified based on the interaction force sensitivity analysis with Tikhonov regularization. A vehicle–bridge interaction model with a wireless monitoring system has been built in the laboratory. Experimental investigation has been carried out for the interaction force and bridge surface roughness identification. Results show that the proposed method is effective and reliable to identify the interaction force and bridge surface roughness. Numerical simulations have also been conducted to study the effectiveness of the proposed method for bridge damage detection. The vehicle is modeled as a 4-degrees-of-freedom half-car and the bridge is modeled as a simply-supported beam. The local bridge damage is simulated as an elemental flexural stiffness reduction. Effects of measurement noise, surface roughness and vehicle speed on the identification are discussed.The results show that the proposed drive-by inspection strategy is efficient and accurate for a quick review on the bridge conditions.


2013 ◽  
Vol 639-640 ◽  
pp. 1214-1219
Author(s):  
Yao Xiao ◽  
Zheng Qing Chen ◽  
Xu Gang Hua

A computerized method is presented for computing the dynamic responses of bridges under moving vehicles. The bridge and vehicle are treated as integrated system and modal superposition method is applied to transfer the equation of motion into modal coordinate system. The road roughness/unevenness is also considered. The effects of different vehicle models, vehicle passing speed and road surface roughness on bridge dynamic responses are studied. The impact factor representing the dynamic effect of passing vehicle is calculated for different road surface roughness


2005 ◽  
Vol 32 (5) ◽  
pp. 825-829 ◽  
Author(s):  
Young Suk Park ◽  
Dong Ku Shin ◽  
Tae Ju Chung

Effects of road surface roughness on the dynamic impact factor of bridge are investigated through full-scale field loading tests under controlled traffic conditions. The dynamic time histories of displacements are obtained for twenty-five bridges on Korean highways. The impact factors of the bridges are evaluated by using the measured displacements. The road surface profiles of the twenty-five bridges are also measured at every 10 to 30 cm interval in the span direction. By using the measured road surface profiles, the international roughness index (IRI) and the roughness coefficients of the bridges are evaluated. The linear regression and correlation analyses are performed to obtain the coherences between the IRI and the roughness coefficient and between the IRI and the impact factor. The sample correlation coefficients between the impact factor and the IRI and between the impact factor and the roughness coefficient are calculated to be 0.61 and 0.62, respectively, showing a strong coherence between the road surface roughness and the impact factor.Key words: bridge, impact factor, road surface roughness, international roughness index, roughness coefficient.


2015 ◽  
Vol 15 (03) ◽  
pp. 1450057 ◽  
Author(s):  
Zhenhu Li ◽  
Francis Tat Kwong Au

This paper presents a genetic algorithm (GA)-based method to identify the damage of girder bridges from the response of a vehicle moving over the bridge. The continuous wavelet transform-based method works when the surface is smooth but the identification becomes difficult when the road surface is rough. To deal with this problem, the identification process is formulated as an optimization problem and a guided GA is used to search for the global optimal value. The vertical accelerations of the vehicle running over the bridge at the intact and damaged states are used to identify the occurrence and location of the damage. Frequencies of the bridge at the intact and damaged states can be extracted from these responses, from which the frequency-based method can roughly estimate the possible locations of the damage. These locations are not unique as frequencies alone are insufficient to identify the damage location. However these initial results can be used to narrow down the search region on which the GA can focus. Numerical study shows that the strategy can identify the damage location for simply supported and continuous girder bridges even though road surface roughness and measurement noise are taken into account.


Sign in / Sign up

Export Citation Format

Share Document