scholarly journals RECOGNIZING DIFFERENT TYPES OF STOCHASTIC PROCESSES

2006 ◽  
Vol 06 (01) ◽  
pp. L1-L6
Author(s):  
JONG U. KIM ◽  
LASZLO B. KISH

We propose a new cross-correlation method that can recognize independent realizations of the same type of stochastic processes and can be used as a new kind of pattern recognition tool in biometrics, sensing, forensic, security and image processing applications. The method, which we call bispectrum correlation coefficient method, makes use of the cross-correlation of the bispectra. Three kinds of cross-correlation coefficients are introduced. To demonstrate the new method, six different random telegraph signals are tested, where four of them have the same power density spectrum. It is shown that the three coefficients can map the different stochastic processes to specific sub-volumes in a cube.

2020 ◽  
Vol 499 (2) ◽  
pp. 2214-2228
Author(s):  
S Malu ◽  
K Sriram ◽  
V K Agrawal

ABSTRACT We performed spectro-temporal analysis in the 0.8–50 keV energy band of the neutron star Z source GX 17+2 using AstroSat Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) data. The source was found to vary in the normal branch (NB) of the hardness–intensity diagram. Cross-correlation studies of LAXPC light curves in soft and hard X-ray band unveiled anticorrelated lags of the order of few hundred seconds. For the first time, cross-correlation studies were performed using SXT soft and LAXPC hard light curves and they exhibited correlated and anticorrelated lags of the order of a hundred seconds. Power density spectrum displayed normal branch oscillations (NBOs) of 6.7–7.8 Hz (quality factor 1.5–4.0). Spectral modelling resulted in inner disc radius of ∼12–16 km with Γ ∼ 2.31–2.44 indicating that disc is close to the innermost stable circular orbit and a similar value of disc radius was noticed based on the reflection model. Different methods were used to constrain the corona size in GX 17+2. Using the detected lags, corona size was found to be 27–46 km (β = 0.1, β = vcorona/vdisc) and 138–231 km (β = 0.5). Assuming the X-ray emission to be arising from the boundary layer (BL), its size was determined to be 57–71 km. Assuming that BL is ionizing the disc’s inner region, its size was constrained to ∼19–86 km. Using NBO frequency, the transition shell radius was found to be around 32 km. Observed lags and no movement of the inner disc front strongly indicate that the varying corona structure is causing the X-ray variation in the NB of Z source GX 17+2.


2019 ◽  
Vol 9 (11) ◽  
pp. 2269 ◽  
Author(s):  
Maxime Irene Dedo ◽  
Zikun Wang ◽  
Kai Guo ◽  
Yongxuan Sun ◽  
Fei Shen ◽  
...  

The transmission of the orbital angular momentum (OAM) beam has attracted a lot of attention in the field of free-space optical (FSO) communication. Usually, after transmitting in atmospheric turbulences, the helical phase-front of OAM beams will be severely distorted, and there will exist the intermode crosstalk. As a result, the performance of the communication system will degrade significantly. In this paper, we have investigated the influences of the level of the turbulence strength to the transmitting OAM beams by changing the refractive-index structural parameter of C n 2 and the number of turbulence random phase screens of N in simulation environment. Then, by adopting the Gerchberg-Saxton (GS) algorithm, which can be used to compute the pre-compensation phase and correct the distorted OAM beams, the retrieving performances of transmitting single and multiplexed OAM beams under different turbulence strengths were also investigated. The simulation results show that with increasing the atmospheric-turbulence strength levels determined by the parameters C n 2 and N, the retrieving performances decrease dramatically. When the turbulence strength level is selected within an appropriate range, the OAM beams can be effectively retrieved by adopting GS algorithm and observing the power density spectrum. Notably, the retrieving performance for the transmission of a single OAM beam is better than that of the multiplexing OAM beam.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2529 ◽  
Author(s):  
Shanshan Tian ◽  
Mengxuan Li ◽  
Yifei Wang ◽  
Xi Chen

Hemiparesis is one of the common sequelae of neurological diseases such as strokes, which can significantly change the gait behavior of patients and restrict their activities in daily life. The results of gait characteristic analysis can provide a reference for disease diagnosis and rehabilitation; however, gait correlation as a gait characteristic is less utilized currently. In this study, a new non-contact electrostatic field sensing method was used to obtain the electrostatic gait signals of hemiplegic patients and healthy control subjects, and an improved Detrended Cross-Correlation Analysis cross-correlation coefficient method was proposed to analyze the obtained electrostatic gait signals. The results show that the improved method can better obtain the dynamic changes of the scaling index under the multi-scale structure, which makes up for the shortcomings of the traditional Detrended Cross-Correlation Analysis cross-correlation coefficient method when calculating the electrostatic gait signal of the same kind of subjects, such as random and incomplete similarity in the trend of the scaling index spectrum change. At the same time, it can effectively quantify the correlation of electrostatic gait signals in subjects. The proposed method has the potential to be a powerful tool for extracting the gait correlation features and identifying the electrostatic gait of hemiplegic patients.


Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


2013 ◽  
Vol 58 (2) ◽  
pp. 122-125 ◽  
Author(s):  
O.V. Gnatovskyy ◽  
◽  
A.M. Negriyko ◽  
V.O. Gnatovskyy ◽  
A.V. Sidorenko ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 222
Author(s):  
Tao Li ◽  
Chenqi Shi ◽  
Peihao Li ◽  
Pengpeng Chen

In this paper, we propose a novel gesture recognition system based on a smartphone. Due to the limitation of Channel State Information (CSI) extraction equipment, existing WiFi-based gesture recognition is limited to the microcomputer terminal equipped with Intel 5300 or Atheros 9580 network cards. Therefore, accurate gesture recognition can only be performed in an area relatively fixed to the transceiver link. The new gesture recognition system proposed by us breaks this limitation. First, we use nexmon firmware to obtain 256 CSI subcarriers from the bottom layer of the smartphone in IEEE 802.11ac mode on 80 MHz bandwidth to realize the gesture recognition system’s mobility. Second, we adopt the cross-correlation method to integrate the extracted CSI features in the time and frequency domain to reduce the influence of changes in the smartphone location. Third, we use a new improved DTW algorithm to classify and recognize gestures. We implemented vast experiments to verify the system’s recognition accuracy at different distances in different directions and environments. The results show that the system can effectively improve the recognition accuracy.


Author(s):  
Matthias Weber ◽  
Anja Niehoff ◽  
Markus A. Rothschild

AbstractThis work deals with the examination of tool marks in human cartilage. We compared the effectiveness of several cleaning methods on cut marks in porcine cartilage. The method cleaning by multiple casts achieved the significantly highest scores (P = 0.02). Furthermore, we examined the grain-like elevations (dots) located on casts of cut cartilage. The results of this study suggest that the casting material forms these dots when penetrating cartilage cavities, which are areas where the strong collagen fibres leave space for the chondrocytes. We performed fixation experiments to avoid this, without success. In addition, 31 casting materials were compared regarding contrast under light-microscope and 3D tool marks scanner. Under the light-microscope, brown materials achieved significantly higher values than grey (P = 0.02) or black (P = 0.00) whereas under the 3D scanner, black materials reached higher contrast values than grey (P = 0.04) or brown (P = 0.047). To compare the accuracy and reproducibility of 6 test materials for cartilage, we used 10 knives to create cut marks that were subsequently scanned. During the alignment of the individual signals of each mark, the cross-correlation coefficients (Xmax) and lags (LXmax) were calculated. The signals of the marks in agarose were aligned with significantly fewer lags and achieved significantly higher cross-correlation coefficients compared to all tested materials (both P = 0.00). Moreover, we determined the cross-correlation coefficients (XC) for known-matches (KM) per material. Agarose achieved significantly higher values than AccuTrans®, Clear Ballistics™, and gelatine (all P = 0.00). The results of this work provide valuable insights for the forensic investigation of marks in human costal cartilage.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Debjit Chatterjee ◽  
Arghajit Jana ◽  
Kaushik Chatterjee ◽  
Riya Bhowmick ◽  
Sujoy Kumar Nath ◽  
...  

We study the properties of the faint X-ray activity of Galactic transient black hole candidate XTE J1908+094 during its 2019 outburst. Here, we report the results of detailed spectral and temporal analysis during this outburst using observations from Nuclear Spectroscopic Telescope Array (NuSTAR). We have not observed any quasi-periodic-oscillations (QPOs) in the power density spectrum (PDS). The spectral study suggests that the source remained in the softer (more precisely, in the soft–intermediate) spectral state during this short period of X-ray activity. We notice a faint but broad Fe Kα emission line at around 6.5 keV. We also estimate the probable mass of the black hole to be 6.5−0.7+0.5M⊙, with 90% confidence.


Author(s):  
Charles Deltour ◽  
Bart Dingenen ◽  
Filip Staes ◽  
Kevin Deschamps ◽  
Giovanni A. Matricali

Background: Foot–ankle motion is affected by chronic ankle instability (CAI) in terms of altered kinematics. This study focuses on multisegmental foot–ankle motion and joint coupling in barefoot and taped CAI patients during the three subphases of stance at running. Methods: Foot segmental motion data of 12 controls and 15 CAI participants during running with a heel strike pattern were collected through gait analysis. CAI participants performed running trials in three conditions: barefoot running, and running with high-dye and low-dye taping. Dependent variables were the range of motion (RoM) occurring at the different inter-segment angles as well as the cross-correlation coefficients between predetermined segments. Results: There were no significant RoM differences for barefoot running between CAI patients and controls. In taped conditions, the first two subphases only showed RoM changes at the midfoot without apparent RoM reduction compared to the barefoot CAI condition. In the last subphase there was limited RoM reduction at the mid- and rearfoot. Cross-correlation coefficients highlighted a tendency towards weaker joint coupling in the barefoot CAI condition compared to the controls. Joint coupling within the taped CAI conditions did not show optimization compared to the barefoot CAI condition. Conclusions: RoM was not significantly changed for barefoot running between CAI patients and controls. In taped conditions, there was no distinct tendency towards lower mean RoM values due to the mechanical restraints of taping. Joint coupling in CAI patients was not optimized by taping.


Sign in / Sign up

Export Citation Format

Share Document