scholarly journals Human Retina Based Identification System Using Gabor Filters and GDA Technique

2020 ◽  
Vol 16 (3) ◽  
pp. 243-253
Author(s):  
Shahad Sultan ◽  
Mayada Faris Ghanim

A biometric authentication system provides an automatic person authentication based on some characteristic features possessed by the individual. Among all other biometrics, human retina is a secure and reliable source of person recognition as it is unique, universal, lies at the back of the eyeball and hence it is unforgeable. The process of authentication mainly includes pre-processing, feature extraction and then features matching and classification. Also authentication systems are mainly appointed in verification and identification mode according to the specific application. In this paper, preprocessing and image enhancement stages involve several steps to highlight interesting features in retinal images. The feature extraction stage is accomplished using a bank of Gabor filter with number of orientations and scales. Generalized Discriminant Analysis (GDA) technique has been used to reduce the size of feature vectors and enhance the performance of proposed algorithm. Finally, classification is accomplished using k-nearest neighbor (KNN) classifier to determine the identity of the genuine user or reject the forged one as the proposed method operates in identification mode. The main contribution in this paper is using Generalized Discriminant Analysis (GDA) technique to address ‘curse of dimensionality’ problem. GDA is a novel method used in the area of retina recognition.

2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350033 ◽  
Author(s):  
OLIVER FAUST ◽  
WENWEI YU ◽  
NAHRIZUL ADIB KADRI

This paper describes a computer-based identification system of normal and alcoholic Electroencephalography (EEG) signals. The identification system was constructed from feature extraction and classification algorithms. The feature extraction was based on wavelet packet decomposition (WPD) and energy measures. Feature fitness was established through the statistical t-test method. The extracted features were used as training and test data for a competitive 10-fold cross-validated analysis of six classification algorithms. This analysis showed that, with an accuracy of 95.8%, the k-nearest neighbor (k-NN) algorithm outperforms naïve Bayes classification (NBC), fuzzy Sugeno classifier (FSC), probabilistic neural network (PNN), Gaussian mixture model (GMM), and decision tree (DT). The 10-fold stratified cross-validation instilled reliability in the result, therefore we are confident when we state that EEG signals can be used to automate both diagnosis and treatment monitoring of alcoholic patients. Such an automatization can lead to cost reduction by relieving medical experts from routine and administrative tasks.


2018 ◽  
Vol 4 (1) ◽  
pp. 68-74
Author(s):  
Faris Muslihul Amin

The research aimed to create a fresh chicken meat identification system to detect differences between formalin and non-formalin chicken meat based on the image of raw chicken meat. Feature extraction method used is the Feature Texture method which is included in the statistical method where the statistical calculation uses a gray degree distribution (histogram) by measuring the level of contrast, granularity, and roughness of an area from the neighboring relationships between pixels in the image then feature extraction, results feature extraction is then classified by K-NN. With the classification using K-NN results obtained high classification accuracy. The K-NN method is a very good method of dealing with the problem of recognizing complex patterns in the form of data training and processing calibration, based on very fast and high accurate literature methods more than other methods. Observation images will be carried out at various distances between the smartphone camera and chicken meat samples.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2213
Author(s):  
Ahyeong Lee ◽  
Saetbyeol Park ◽  
Jinyoung Yoo ◽  
Jungsook Kang ◽  
Jongguk Lim ◽  
...  

Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.


2018 ◽  
Vol 7 (1) ◽  
pp. 115
Author(s):  
Sheela N. ◽  
Basavaraj L.

Human eye can be affected by different types of diseases. Age-Related Macular Degeneration (AMD) is one of the such diseases, and it mainly occurs after 50 years of age. This disease is characterized by the occurrence of yellow spots called as Drusen. In this work, an automated method for the detection of drusen in Fundus image has been developed, and it has been tested on 70 images consisting of 30 normal images and 40 images with drusen. Performance of the Support Vector Machine (SVM) and K Nearest Neighbor (KNN) classifier has been evaluated using Data's reduction using Principle Component Analysis (PCA) and Data's selection using Genetic Algorithm (GA).Performance evaluation has been done in terms of accuracy, sensitivity, specificity, misclassification rate, positive predictive rate, negative predictive rate and Youden’s Index. The proposed method has achieved highest accuracy of 98.7% when data selection using Genetic Algorithm has been applied.


2012 ◽  
Vol 9 (4) ◽  
pp. 1645-1661 ◽  
Author(s):  
Ray-I Chang ◽  
Shu-Yu Lin ◽  
Jan-Ming Ho ◽  
Chi-Wen Fann ◽  
Yu-Chun Wang

Image retrieval has been popular for several years. There are different system designs for content based image retrieval (CBIR) system. This paper propose a novel system architecture for CBIR system which combines techniques include content-based image and color analysis, as well as data mining techniques. To our best knowledge, this is the first time to propose segmentation and grid module, feature extraction module, K-means and k-nearest neighbor clustering algorithms and bring in the neighborhood module to build the CBIR system. Concept of neighborhood color analysis module which also recognizes the side of every grids of image is first contributed in this paper. The results show the CBIR systems performs well in the training and it also indicates there contains many interested issue to be optimized in the query stage of image retrieval.


Author(s):  
Made Sudarma ◽  
I Gede Harsemadi

Each of music which has been created, has its own mood which is emitted, therefore, there has been many researches in Music Information Retrieval (MIR) field that has been done for recognition of mood to music.  This research produced software to classify music to the mood by using K-Nearest Neighbor and ID3 algorithm.  In this research accuracy performance comparison and measurement of average classification time is carried out which is obtained based on the value produced from music feature extraction process.  For music feature extraction process it uses 9 types of spectral analysis, consists of 400 practicing data and 400 testing data.  The system produced outcome as classification label of mood type those are contentment, exuberance, depression and anxious.  Classification by using algorithm of KNN is good enough that is 86.55% at k value = 3 and average processing time is 0.01021.  Whereas by using ID3 it results accuracy of 59.33% and average of processing time is 0.05091 second.


Sign in / Sign up

Export Citation Format

Share Document