A NOVEL PROPORTIONAL AND SIMULTANEOUS CONTROL METHOD FOR PROSTHETIC HAND

2017 ◽  
Vol 17 (08) ◽  
pp. 1750120 ◽  
Author(s):  
XIN LI ◽  
QIANG HUANG ◽  
JINYING ZHU ◽  
WENTAO SUN ◽  
HAOTIAN SHE

This paper proposes a novel control method of using the surface electromyogram (sEMG) signals to predict the kinematics of hand and wrist, which will be applied in the prosthetic hand control. Prediction of movement in 3 degree-of-freedoms’ (DoFs’) (wrist flexion/extension (WFE), lateral abduction/adduction (LAA), and hand open/close (HOC)) is investigated in this paper. The proposed control method contains a time-delay recurrent neural network (TDRNN), adopting the previous prediction of the joint angles and the time-delay sEMG signals as the system input. This proposed method uses a batch training based on Levenberg–Marquardt (LM) algorithm to learn the weights of the TDRNN. The trained TDRNN is aimed to achieve simultaneous and proportional regression from human movements of the 3 DoFs to those of the prosthetic hand. Three able-bodied subjects are chosen to participate in the test and demonstrate its feasibility and performance. The offline test result R2 ranges between 0.81 and 0.94. The online test results show that TDRNN reacts faster, which verifies that the method proposed in this paper will be feasible and effective in prosthetic hand control.

2016 ◽  
pp. 1-1 ◽  
Author(s):  
Davide Brunelli ◽  
Elisabetta Farella ◽  
Davide Giovanelli ◽  
Bojan Milosevic ◽  
Ivan Minakov

2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Author(s):  
Yakov Gutkin ◽  
Asher Madjar ◽  
Emanuel Cohen

Abstract In this paper, we describe the design, layout, and performance of a 6-bit TTD (true time delay) chip operating over the entire band of 2–18 GHz. The 1.15 mm2 chip is implemented using TSMC foundry 65 nm technology. The least significant bit is 1 ps. The design is based on the concept of all-pass network with some modifications intended to reduce the number of unit cells. Thus, the first three bits are implemented in a single delay cell. A peaking buffer amplifier between bit 4 and bit 5 is used for impedance matching and partial compensation of the insertion loss slope. The rms delay error of the TTD is <1 ps over most of the frequency band and insertion loss is between 2.5 and 6.3 dB for all 64 states.


2021 ◽  
Vol 11 (2) ◽  
pp. 815
Author(s):  
Husam Almusawi ◽  
Géza Husi

Impairments of fingers, wrist, and hand forearm result in significant hand movement deficiencies and daily task performance. Most of the existing rehabilitation assistive robots mainly focus on either the wrist training or fingers, and they are limiting the natural motion; many mechanical parts associated with the patient’s arms, heavy and expensive. This paper presented the design and development of a new, cost-efficient Finger and wrist rehabilitation mechatronics system (FWRMS) suitable for either hand right or left. The proposed machine aimed to present a solution to guide individuals with severe difficulties in their everyday routines for people suffering from a stroke or other motor diseases by actuating seven joints motions and providing them repeatable Continuous Passive Motion (CPM). FWRMS approach uses a combination of; grounded-exoskeleton structure to provide the desired displacement to the hand’s four fingers flexion/extension (F/E) driven by an indirect feed drive mechanism by adopting a leading screw and nut transmission; and an end-effector structure to provide angular velocity to the wrist flexion/ extension (F/E), wrist radial/ulnar deviation (R/U), and forearm supination/pronation (S/P) driven by a rotational motion mechanism. We employed a single dual-sided actuator to power both mechanisms. Additionally, this article presents the implementation of a portable embedded controller. Moreover, this paper addressed preliminary experimental testing and evaluation process. The conducted test results of the FWRMS robot achieved the required design characteristics and executed the motion needed for the continuous passive motion rehabilitation and provide stable trajectories guidance by following the natural range of motion (ROM) and a functional workspace of the targeted joints comfortably for all trainable movements by FWRMS.


2018 ◽  
Vol 173 ◽  
pp. 02009
Author(s):  
Lu Xing-Hua ◽  
Huang Peng-Fen ◽  
Huang Wei-Peng

The bionic machine leg is disturbed by the joint during the walking process, which is easy to produce time delay, which causes the robustness of the control of the machine leg is not good. In order to improve the robustness of the bionic gait control of the machine leg, a robust control method for the bionic gait of the machine leg based on time - delay feedback is proposed. The gait correlation parameters of robot leg are collected by sensor array, and the dynamic model of bionic gait is constructed. The fuzzy controller of bionic gait of robot leg is constructed by using time-delay coupling control method. The delayed feedback control error compensation method of machine leg correction is taken to improve the steady control performance of the robotic leg, reduce the steady-state error, improve the robustness of the control machine leg. The simulation results show that this method is robust to the bionic gait control of the machine leg. The output error of the gait parameter can quickly converge to zero, and the accurate estimation of the attitude parameter is stronger.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sheng Hu ◽  
Shuanjun Song ◽  
Wenhui Liu

Considering the problem that the process quality state is difficult to analyze and monitor under manufacturing big data, this paper proposed a data cloud model similarity-based quality fluctuation monitoring method in data-driven production process. Firstly, the randomness of state fluctuation is characterized by entropy and hyperentropy features. Then, the cloud pool drive model between quality fluctuation monitoring parameters is built. On this basis, cloud model similarity degree from the perspective of maximum fluctuation border is defined and calculated to realize the process state analysis and monitoring. Finally, the experiment is conducted to verify the adaptability and performance of the cloud model similarity-based quality control approach, and the results indicate that the proposed approach is a feasible and acceptable method to solve the process fluctuation monitoring and quality stability analysis in the production process.


Sign in / Sign up

Export Citation Format

Share Document