AN ALTERNATIVE TO PERIODIC HOMOGENIZATION FOR DENTIN ELASTIC STIFFNESS

2020 ◽  
Vol 20 (02) ◽  
pp. 1950081
Author(s):  
CHLOE ARSON ◽  
YANNICK YASOTHAN ◽  
ROMAIN JEANNERET ◽  
AURELIE BENOIT ◽  
NICOLAS ROUBIER ◽  
...  

Dentin, the main tissue of the tooth, is made of tubules surrounded by peri-tubular dentin (PTD), embedded in a matrix of inter-tubular dentin (ITD). The PTD and the ITD have different relative fractions of collagen and hydroxyapatite crystals. The ITD is typically less rigid than the PTD, which can be seen as a set of parallel hollow cylindrical reinforcements in the ITD matrix. In this paper, we extend Hashin and Rozen’s homogenization scheme to a nonuniform distribution of hollow PTD cylinders, determined from image analysis. We relate the transverse isotropic elastic coefficients of a Representative Elementary Volume (REV) of dentin to the elastic and topological properties of PTD and ITD. The model is calibrated against experimental data. Each sample tested is consistently characterized by Environmental Scanning Electron Microscopy (ESEM), nanoindentation and Resonant Ultrasound Spectroscopy (RUS), which ensures that macroscopic mechanical properties measured are correlated with microstructure observations. Despite the high variability of microstructure descriptors and mechanical properties, statistical analyses show that Hashin’s bounds converge and that the proposed model can be used for back-calculating the microscopic Poisson’s ratios of dentin constituents. Three-point bending tests conducted in the laboratory were simulated with the Finite Element Method (FEM). Elements were assigned transverse isotropic elastic parameters calculated by homogenization. The tubule orientation and the pdf of the ratio inner/outer tubule radius were determined in several zones of the beams before testing. The remainder of the micro-mechanical parameters were taken equal to those calibrated by RUS. The horizontal strains found experimentally by Digital Image Correlation (DIC) were compared to those found by FEM. The DIC and FEM horizontal strain fields showed a very good agreement in trend and order of magnitude, which verifies the calibration of the homogenization model. By contrast with previous studies of dentin, we fully calibrated a closed form mechanical model against experimental data and we explained the testing procedures. In elastic conditions, the proposed homogenization scheme gives a better account of microstructure variability than micro–macro dentin models with periodic microstructure.

2012 ◽  
Vol 232 ◽  
pp. 45-50 ◽  
Author(s):  
Salma Barboura ◽  
Salah Ramtani

The present work tries to make an attempt to improve previous work which offers a simple but effective way to construct satisfied predicating model. Indeed, recent work due to Peng et al. [13] and dealing with a two-step homogenization scheme is revisited here by introducing an iterative process which allows us to take into account differently the porosity of the elastic media. Several homogenization schemes (dilute, Mori-Tanaka, self-consistent ...) are presented and compared with experimental data. One can say that the current approach provides reasonably accurate predictions for the effective moduli of multiphase composites without using the n parameter as proposed by Peng et al. [13]


MRS Bulletin ◽  
2009 ◽  
Vol 34 (3) ◽  
pp. 178-183 ◽  
Author(s):  
Harold S. Park ◽  
Wei Cai ◽  
Horacio D. Espinosa ◽  
Hanchen Huang

AbstractNanowires are among the most exciting one-dimensional nanomaterials because of their unique properties, which result primarily from their chemical composition and large surface area to volume ratio. These properties make them ideal building blocks for the development of next generation electronics, opto-electronics, and sensor systems. In this article, we focus on the unique mechanical properties of nanowires, which emerge from surface atoms having different electron densities and fewer bonding neighbors than atoms lying within the nanowire bulk. In this respect, atomistic simulations have revealed a plethora of novel surface-driven mechanical behavior and properties, including both increases and decreases in elastic stiffness, phase transformations, shape memory, and pseudoelastic effects. This article reviews such atomistic simulations, as well as experimental data of these phenomena, while assessing future challenges and directions.


2015 ◽  
Vol 240 ◽  
pp. 255-260 ◽  
Author(s):  
Michał Kowalik ◽  
Justyna Pyrzanowska ◽  
Agnieszka Piechal ◽  
Kamilla Blecharz-Klin ◽  
Ewa Widy-Tyszkiewicz ◽  
...  

Ring-shaped specimen is commonly used in tests for determination of mechanical properties for arteries in hoop direction, especially for small mammals such as rats or mice. Although ring test is a lot more convenient than the tests concerning strip specimens, interpretation of the experimental data might be inconclusive – it is difficult distinguish whether it's still straightening up or the actual tension begins. The basic problem is to properly define initial length of specimen, which is essential for strain calculation. The purpose of this study was to evaluate various methods for strain evaluation. Ten Wistar Albino Glaxo male rats (3 months old, body weight about 200g) were sacrificed by decapitation and arteries were immediately removed. Three specimens, each approximately 2–3mm long, from each rat were excised adjacent to the aortic arch. Couple different initial lengths, as well as Digital Image Correlation based extensometer results were used for strain-stress response calculations. In addition a 3D Finite Element model, with an Ogden constitutive model based material, was made for deeper investigation of specimen behavior. This study has shown that the testing procedure for determination of mechanical properties of arteries, based on ring-shaped specimen, is prone to errors. Stiffness calculations are very sensitive to the choice of initial length of the specimen. As the use of DIC proved to give very good correlation with experimental data this method will be used in further studies.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


Author(s):  
C Cosenza ◽  
V Niola ◽  
S Savino

The development of suitable models for mechanical fingers, whether they are part of prosthetic device or of a robotic hand, is a powerful tool to predict the behaviour of their components since the early stages of design, especially for underactuated mechanisms. Experimental data can improve the reliability of such models and promote their application to build proper control strategies especially for prosthetic hands. Here, we have developed a multi-jointed model of a mechanical finger. The finger is part of the Federica hand: an underactuated mechanical hand that was conceived for prosthetic purpose. The model accounts for friction phenomena in the finger and it is tuned with experimental data acquired through a digital image correlation device. The model allowed us to write kinematics relations of the phalanges and evaluate finger configurations in relation to the closure velocity. Moreover, it was possible to estimate the tendon force and the work analysis occurring during the closure tasks, both in free mode and in presence of objects.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Francesco Paolo La Mantia ◽  
Maria Chiara Mistretta ◽  
Vincenzo Titone

In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit for the experimental values of both rheological and mechanical properties.


2020 ◽  
Vol 28 ◽  
pp. 978-985
Author(s):  
Marouene Zouaoui ◽  
Julien Gardan ◽  
Pascal Lafon ◽  
Carl Labergere ◽  
Ali Makke ◽  
...  

Author(s):  
Pavan Prakash Duvvuri ◽  
Rajesh Kumar Shrivastava ◽  
Sheshadri Sreedhara

Stringent emission legislations and growing health concerns have contributed to the evolution of soot modeling in diesel engines from simple empirical relations to methods involving detailed kinetics and complex aerosol dynamics. In this paper, four different soot models have been evaluated for the high temperature, high pressure combusting dodecane spray cases of engine combustion network (ECN) spray A which mimics engine-relevant conditions. The soot models considered include an empirical, a multistep, a method of moments based, and a discrete sectional method soot model. Two experimental cases with ambient oxygen volume of 21% and 15% have been modeled. A good agreement between simulations and experiments for vapor penetration and heat release rate has been obtained. Quasi-steady soot volume fraction contours for the four soot models have been compared with experiments. Contours of the species and source terms involved in soot modeling have also been compared for a better understanding of soot processes. The empirical soot model results in higher magnitude and spread of soot due to a lack of modeling framework for oxidation through OH species. Among the four models studied, the multistep soot model has been observed to provide the most promising agreement with the experimental data in terms of distribution of soot and location of peak soot volume fraction. Due to a two-way coupling of soot models, the detailed models predict an upstream location for soot as compared to the multi-step soot model which is one way coupled. A significant difference (of an order of magnitude) in the concentration of PAH (polycyclic aromatic hydrocarbons) precursor between multistep and detailed soot models has been observed because of precursor consumption due to the coupling of detailed soot models with chemical kinetics. It is recommended that kinetic schemes, especially those concerning PAH, be validated with experimental data with a kinetics-coupled soot model.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1097
Author(s):  
Umer Masood Chaudry ◽  
Seung-Chang Han ◽  
Fathia Alkelae ◽  
Tea-Sung Jun

In the present study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded (FSW) DP780 steel sheets was investigated. FSW was carried out at a constant tool rotation speed of 400 rpm and different welding speeds (200 mm/min and 400 min/min). A defect free weld was witnessed for both of the welding conditions. The mutual effect of severe plastic deformation and frictional heat generation by pin rotation during the FSW process resulted in grain refinement due to dynamic recrystallization in the stir zone (SZ) and thermo-mechanically affected zone (TMAZ). Lower tensile elongation and higher yield and ultimate tensile strengths were recorded for welded-samples as compared to the base material (BM) DP780 steel. The joints were subsequently annealed at various temperatures at 450–650 °C for 1 h. At higher annealing temperature, the work hardening rate of joints gradually decreased and subsequently failed in the softened heat-affected zone (HAZ) during the uniaxial tensile test. Reduction in yield strength and tensile strength was found in all PWHT conditions, though improvement in elongation was achieved by annealing at 550 °C. The digital image correlation analysis showed that an inhomogeneous strain distribution occurred in the FSWed samples, and the strain was particularly highly localized in the advancing side of interface zone. The nanoindentation measurements covering the FSWed joint were consistent with an increase of the annealing temperature. The various grains size in the BM, TMAZ, and SZ is the main factor monitoring the hardness distribution in these zones and the observed discrepancies in mechanical properties.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1094
Author(s):  
M. A. Lakhdari ◽  
F. Krajcarz ◽  
J. D. Mithieux ◽  
H. P. Van Landeghem ◽  
M. Veron

The impact of microstructure evolution on mechanical properties in superduplex stainless steel UNS S32750 (EN 1.4410) was investigated. To this end, different thermomechanical treatments were carried out in order to obtain clearly distinct duplex microstructures. Optical microscopy and scanning electron microscopy, together with texture measurements, were used to characterize the morphology and the preferred orientations of ferrite and austenite in all microstructures. Additionally, the mechanical properties were assessed by tensile tests with digital image correlation. Phase morphology was not found to significantly affect the mechanical properties and neither were phase volume fractions within 13% of the 50/50 ratio. Austenite texture was the same combined Goss/Brass texture regardless of thermomechanical processing, while ferrite texture was mainly described by α-fiber orientations. Ferrite texture and average phase spacing were found to have a notable effect on mechanical properties. One of the original microstructures of superduplex stainless steel obtained here shows a strength improvement by the order of 120 MPa over the industrial material.


Sign in / Sign up

Export Citation Format

Share Document