HEALTH OF THINGS MODEL FOR CLASSIFYING HUMAN HEART SOUND SIGNALS USING CO-OCCURRENCE MATRIX AND SPECTROGRAM

2020 ◽  
Vol 20 (06) ◽  
pp. 2050040
Author(s):  
VINAY ARORA ◽  
EDDIE YIN-KWEE NG ◽  
ROHAN SINGH LEEKHA ◽  
KARUN VERMA ◽  
TAKSHI GUPTA ◽  
...  

Cardiovascular diseases have become one of the world’s leading causes of death today. Several decision-making systems have been developed with computer-aided support to help the cardiologists in detecting heart disease and thereby minimizing the mortality rate. This paper uses an unexplored sub-domain related to textural features for classifying phonocardiogram (PCG) as normal or abnormal using Grey Level Co-occurrence Matrix (GLCM). The matrix has been applied to extract features from spectrogram of the PCG signals taken from the Physionet 2016 benchmark dataset. Random Forest, Support Vector Machine, Neural Network, and XGBoost have been applied to assess the status of the human heart using PCG signal spectrogram. The result of GLCM is compared with the two other textural feature extraction methods, viz. structural co-occurrence matrix (SCM), and local binary patterns (LBP). Experimental results have proved that applying machine learning model to classify PCG signal on the dataset where GLCM has extracted the feature-set, the accuracy attained is greater as compared to its peer approaches. Thus, this methodology can go a long way to help the medical specialists in precisely and accurately assessing the heart condition of a patient.

Author(s):  
Pedro Pedrosa Rebouças Filho ◽  
Suane Pires Pinheiro Da Silva ◽  
Jefferson Silva Almeida ◽  
Elene Firmeza Ohata ◽  
Shara Shami Araujo Alves ◽  
...  

Chronic kidney diseases cause over a million deaths worldwide every year. One of the techniques used to diagnose the diseases is renal scintigraphy. However, the way that is processed can vary depending on hospitals and doctors, compromising the reproducibility of the method. In this context, we propose an approach to process the exam using computer vision and machine learning to classify the stage of chronic kidney disease. An analysis of different features extraction methods, such as Gray-Level Co-occurrence Matrix, Structural Co-occurrence Matrix, Local Binary Patters (LBP), Hu's Moments and Zernike's Moments in combination with machine learning methods, such as Bayes, Multi-layer Perceptron, k-Nearest Neighbors, Random Forest and Support Vector Machines (SVM), was performed. The best result was obtained by combining LBP feature extractor with SVM classifier. This combination achieved accuracy of 92.00% and F1-score of 91.00%, indicating that the proposed method is adequate to classify chronic kidney disease in two stages, being a high risk of developing end-stage renal failure and other outcomes, and otherwise.


2020 ◽  
Vol 2 (3) ◽  
pp. 121-131
Author(s):  
Enas Mohammed Hussein Saeed ◽  
Hayder Adnan Saleh ◽  
Enam Azez Khalel

Now mammography can be defined as the most reliable method for early breast cancer detection. The main goal of this study is to design a classifier model to help radiologists to provide a second view to diagnose mammograms. In the proposed system medium filter and binary image with a global threshold have been applied for removing the noise and small artifacts in the pre-processing stage. Secondly, in the segmentation phase, a Hybrid Bounding Box and Region Growing (HBBRG) algorithm are utilizing to remove pectoral muscles, and then a geometric method has been applied to cut the largest possible square that can be obtained from a mammogram which represents the ROI. In the features extraction phase three method was used to prepare texture features to be a suitable introduction to the classification process are first Order (statistical features), Local Binary Patterns (LBP), and Gray-Level Co-Occurrence Matrix (GLCM), Finally, SVM has been applied in two-level to classify mammogram images in the first level to normal or abnormal, and then the classification of abnormal once in the second level to the benign or malignant image. The system was tested on the MAIS the Mammogram image analysis Society (MIAS) database, in addition to the image from the Teaching Oncology Hospital, Medical City in Baghdad, where the results showed achieving an accuracy of 95.454% for the first level and 97.260% for the second level, also, the results of applying the proposed system to the MIAS database alone were achieving an accuracy of 93.105% for the first level and 94.59 for the second level.


2019 ◽  
Vol 15 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Jihui Tang ◽  
Jie Ning ◽  
Xiaoyan Liu ◽  
Baoming Wu ◽  
Rongfeng Hu

<P>Introduction: Machine Learning is a useful tool for the prediction of cell-penetration compounds as drug candidates. </P><P> Materials and Methods: In this study, we developed a novel method for predicting Cell-Penetrating Peptides (CPPs) membrane penetrating capability. For this, we used orthogonal encoding to encode amino acid and each amino acid position as one variable. Then a software of IBM spss modeler and a dataset including 533 CPPs, were used for model screening. </P><P> Results: The results indicated that the machine learning model of Support Vector Machine (SVM) was suitable for predicting membrane penetrating capability. For improvement, the three CPPs with the most longer lengths were used to predict CPPs. The penetration capability can be predicted with an accuracy of close to 95%. </P><P> Conclusion: All the results indicated that by using amino acid position as a variable can be a perspective method for predicting CPPs membrane penetrating capability.</P>


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 419 ◽  
Author(s):  
Dongdong Du ◽  
Jun Wang ◽  
Bo Wang ◽  
Luyi Zhu ◽  
Xuezhen Hong

Postharvest kiwifruit continues to ripen for a period until it reaches the optimal “eating ripe” stage. Without damaging the fruit, it is very difficult to identify the ripeness of postharvest kiwifruit by conventional means. In this study, an electronic nose (E-nose) with 10 metal oxide semiconductor (MOS) gas sensors was used to predict the ripeness of postharvest kiwifruit. Three different feature extraction methods (the max/min values, the difference values and the 70th s values) were employed to discriminate kiwifruit at different ripening times by linear discriminant analysis (LDA), and results showed that the 70th s values method had the best performance in discriminating kiwifruit at different ripening stages, obtaining a 100% original accuracy rate and a 99.4% cross-validation accuracy rate. Partial least squares regression (PLSR), support vector machine (SVM) and random forest (RF) were employed to build prediction models for overall ripeness, soluble solids content (SSC) and firmness. The regression results showed that the RF algorithm had the best performance in predicting the ripeness indexes of postharvest kiwifruit compared with PLSR and SVM, which illustrated that the E-nose data had high correlations with overall ripeness (training: R2 = 0.9928; testing: R2 = 0.9928), SSC (training: R2 = 0.9749; testing: R2 = 0.9143) and firmness (training: R2 = 0.9814; testing: R2 = 0.9290). This study demonstrated that E-nose could be a comprehensive approach to predict the ripeness of postharvest kiwifruit through aroma volatiles.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1668
Author(s):  
Zongming Dai ◽  
Kai Hu ◽  
Jie Xie ◽  
Shengyu Shen ◽  
Jie Zheng ◽  
...  

Traditional co-word networks do not discriminate keywords of researcher interest from general keywords. Co-word networks are therefore often too general to provide knowledge if interest to domain experts. Inspired by the recent work that uses an automatic method to identify the questions of interest to researchers like “problems” and “solutions”, we try to answer a similar question “what sensors can be used for what kind of applications”, which is great interest in sensor- related fields. By generalizing the specific questions as “questions of interest”, we built a knowledge network considering researcher interest, called bipartite network of interest (BNOI). Different from a co-word approaches using accurate keywords from a list, BNOI uses classification models to find possible entities of interest. A total of nine feature extraction methods including N-grams, Word2Vec, BERT, etc. were used to extract features to train the classification models, including naïve Bayes (NB), support vector machines (SVM) and logistic regression (LR). In addition, a multi-feature fusion strategy and a voting principle (VP) method are applied to assemble the capability of the features and the classification models. Using the abstract text data of 350 remote sensing articles, features are extracted and the models trained. The experiment results show that after removing the biased words and using the ten-fold cross-validation method, the F-measure of “sensors” and “applications” are 93.2% and 85.5%, respectively. It is thus demonstrated that researcher questions of interest can be better answered by the constructed BNOI based on classification results, comparedwith the traditional co-word network approach.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


1999 ◽  
Vol 39 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Joana Azeredo ◽  
Valentina Lazarova ◽  
Rosário Oliveira

To study the composition of a biofilm a previous extraction method is required to separate cells from the matrix. There are several methods reported in the literature; however they are not efficient or promote leakage of intracellular material. In this work several extraction methods were assayed in mixed culture and pure culture biofilms and their efficiency was evaluated by the amount of organic carbon, proteins and intracellular material extracted. The results showed that the extraction with glutaraldehyde 3% (w/v) was the most suitable method, extracting great amounts of organic carbon without promoting cell lysis or permeabilization. Glutaraldehyde is a bifunctional reagent that binds to cell walls avoiding their permeabilization and the biofilm matrix is solubilized in the solution.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2012 ◽  
Vol 532-533 ◽  
pp. 1191-1195 ◽  
Author(s):  
Zhen Yan Liu ◽  
Wei Ping Wang ◽  
Yong Wang

This paper introduces the design of a text categorization system based on Support Vector Machine (SVM). It analyzes the high dimensional characteristic of text data, the reason why SVM is suitable for text categorization. According to system data flow this system is constructed. This system consists of three subsystems which are text representation, classifier training and text classification. The core of this system is the classifier training, but text representation directly influences the currency of classifier and the performance of the system. Text feature vector space can be built by different kinds of feature selection and feature extraction methods. No research can indicate which one is the best method, so many feature selection and feature extraction methods are all developed in this system. For a specific classification task every feature selection method and every feature extraction method will be tested, and then a set of the best methods will be adopted.


Sign in / Sign up

Export Citation Format

Share Document