scholarly journals MEASURING CARDIAC OUTPUT THROUGH THERMODILUTION BASED ON MACHINE LEARNING

Author(s):  
QI GUO ◽  
XIAOMEI WU

Cardiac output (CO) refers to the amount of blood ejected from a unilateral ventricle per minute and is an important measure of cardiac function. Thermodilution is the gold standard for CO measurement because of its accuracy. However, the traditional thermodilution method requires calibration of the correction factor before measurement, which makes its practical application difficult. Therefore, conducting CO measurement by using a machine-learning-based thermodilution method is proposed in this paper, and CO is regressed and predicted through the thermodilution curve by a machine learning model. In this paper, we constructed five cardiac vascular models, and three of them were randomly selected to simulate the thermodilution process. Nine features of the thermodilution curve from the time–frequency domains were extracted and fed into the multilayer perceptron model for training. On the basis of a cross-validation method, the accuracy of the final prediction model was 97.99% ([Formula: see text]%). Simultaneously, a trained neural network was used to predict the CO of the remaining two cardiac vascular models, and the resulting error was within 5%. In this paper, an experimental system consisting of a water pump, a three-way valve and a temperature sensor is also designed, and the thermodilution curves at different quantities of flow are tested and regressed and predicted with the above model, with the error being within 10%, which met the requirement for real-world use, and thus, a method was established for measuring CO by using machine-learning-based thermodilution.

2019 ◽  
Author(s):  
Bambi L. DeLaRosa ◽  
Jeffrey S. Spence ◽  
Michael A. Motes ◽  
Wing To ◽  
Sven Vanneste ◽  
...  

AbstractPrior Go/NoGo studies have localized specific regions and EEG spectra for which traditional approaches have distinguished between Go and NoGo conditions. A more detailed characterization of the spatial distribution and timing of the synchronization of frequency bands would contribute substantially to the clarification of neural mechanisms that underlie performance of the Go/NoGo task. The present study used a machine learning approach to learn the features that distinguish between ERSPs involved in selection and inhibition in a Go/NoGo task. A neural network classifier was used to predict task conditions for each subject to characterize ERSPs associated with Go versus NoGo trials. The final model accurately identified individual task conditions at an overall rate of 92%, estimated by 5-fold cross-validation. The detailed accounting of EEG time-frequency patterns localized to brain sources (i.e., thalamus, preSMA, orbitofrontal cortex, and superior parietal cortex) provides elaboration on previous findings from fMRI and EEG studies and more information about EEG power changes in multiple frequency bands (i.e., primarily theta power increase, alpha decreases, and beta increases and decreases) within these regions underlying the selection and inhibition processes engaged in the Go and NoGo trials. This extends previous findings, providing more information about neural mechanisms underlying selection and inhibition processes engaged in the Go and NoGo trials, respectively, and may offer insight into therapeutic uses of neuromodulation in neural dysfunction.


Author(s):  
César A. Millán ◽  
Nathalia A. Girón ◽  
Diego M. Lopez

Atrial Fibrillation (AF) is the most common cardiac arrhythmia found in clinical practice. It affects an estimated 33.5 million people, representing approximately 0.5% of the world’s population. Electrocardiogram (ECG) is the main diagnostic criterion for AF. Recently, photoplethysmography (PPG) has emerged as a simple and portable alternative for AF detection. However, it is not completely clear which are the most important features of the PPG signal to perform this process. The objective of this paper is to determine which are the most relevant features for PPG signal analysis in the detection of AF. This study is divided into two stages: (a) a systematic review carried out following the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) statement in six databases, in order to identify the features of the PPG signal reported in the literature for the detection of AF, and (b) an experimental evaluation of them, using machine learning, in order to determine which have the greatest influence on the process of detecting AF. Forty-four features were found when analyzing the signal in the time, frequency, or time–frequency domains. From those 44 features, 27 were implemented, and through machine learning, it was found that only 11 are relevant in the detection process. An algorithm was developed for the detection of AF based on these 11 features, which obtained an optimal performance in terms of sensitivity (98.43%), specificity (99.52%), and accuracy (98.97%).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saira Aziz ◽  
Sajid Ahmed ◽  
Mohamed-Slim Alouini

AbstractElectrocardiogram (ECG) signals represent the electrical activity of the human hearts and consist of several waveforms (P, QRS, and T). The duration and shape of each waveform and the distances between different peaks are used to diagnose heart diseases. In this work, to better analyze ECG signals, a new algorithm that exploits two-event related moving-averages (TERMA) and fractional-Fourier-transform (FrFT) algorithms is proposed. The TERMA algorithm specifies certain areas of interest to locate desired peak, while the FrFT rotates ECG signals in the time-frequency plane to manifest the locations of various peaks. The proposed algorithm’s performance outperforms state-of-the-art algorithms. Moreover, to automatically classify heart disease, estimated peaks, durations between different peaks, and other ECG signal features were used to train a machine-learning model. Most of the available studies uses the MIT-BIH database (only 48 patients). However, in this work, the recently reported Shaoxing People’s Hospital (SPH) database, which consists of more than 10,000 patients, was used to train the proposed machine-learning model, which is more realistic for classification. The cross-database training and testing with promising results is the uniqueness of our proposed machine-learning model.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


2019 ◽  
Author(s):  
Siddhartha Laghuvarapu ◽  
Yashaswi Pathak ◽  
U. Deva Priyakumar

Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies.


2019 ◽  
Vol 15 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Jihui Tang ◽  
Jie Ning ◽  
Xiaoyan Liu ◽  
Baoming Wu ◽  
Rongfeng Hu

<P>Introduction: Machine Learning is a useful tool for the prediction of cell-penetration compounds as drug candidates. </P><P> Materials and Methods: In this study, we developed a novel method for predicting Cell-Penetrating Peptides (CPPs) membrane penetrating capability. For this, we used orthogonal encoding to encode amino acid and each amino acid position as one variable. Then a software of IBM spss modeler and a dataset including 533 CPPs, were used for model screening. </P><P> Results: The results indicated that the machine learning model of Support Vector Machine (SVM) was suitable for predicting membrane penetrating capability. For improvement, the three CPPs with the most longer lengths were used to predict CPPs. The penetration capability can be predicted with an accuracy of close to 95%. </P><P> Conclusion: All the results indicated that by using amino acid position as a variable can be a perspective method for predicting CPPs membrane penetrating capability.</P>


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document