scholarly journals A UNIFIED COMMUNITY DETECTION, VISUALIZATION AND ANALYSIS METHOD

2014 ◽  
Vol 17 (01) ◽  
pp. 1450001 ◽  
Author(s):  
MICHEL CRAMPES ◽  
MICHEL PLANTIÉ

With the widespread social networks on the Internet, community detection in social graphs has recently become an important research domain. Interest was initially limited to unipartite graph inputs and partitioned community outputs. More recently, bipartite graphs, directed graphs and overlapping communities have all been investigated. Few contributions however have encompassed all three types of graphs simultaneously. In this paper, we present a method that unifies community detection for these three types of graphs while at the same time it merges partitioned and overlapping communities. Moreover, the results are visualized in a way that allows for analysis and semantic interpretation. For validation purposes this method is experimented on some well-known simple benchmarks and then applied to real data: photos and tags in Facebook and Human Brain Tractography data. This last application leads to the possibility of applying community detection methods to other fields such as data analysis with original enhanced performances.

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 260 ◽  
Author(s):  
Bingyang Huang ◽  
Chaokun Wang ◽  
Binbin Wang

With the enrichment of the entity information in the real world, many networks with attributed nodes are proposed and studied widely. Community detection in these attributed networks is an essential task that aims to find groups where the intra-nodes are much more densely connected than the inter-nodes. However, many existing community detection methods in attributed networks do not distinguish overlapping communities from non-overlapping communities when designing algorithms. In this paper, we propose a novel and accurate algorithm called Node-similarity-based Multi-Label Propagation Algorithm (NMLPA) for detecting overlapping communities in attributed networks. NMLPA first calculates the similarity between nodes and then propagates multiple labels based on the network structure and the node similarity. Moreover, NMLPA uses a pruning strategy to keep the number of labels per node within a suitable range. Extensive experiments conducted on both synthetic and real-world networks show that our new method significantly outperforms state-of-the-art methods.


Author(s):  
Feng Ouge ◽  
Shen Yi ◽  
Xu Huanliang ◽  
Jiang Haiyan ◽  
Ren Shougang

Background: Community detection is significant for the understanding of the structure and function of networks, and becomes an attractive topic for researchers. However, many existing local methods only focus on disjoint communities and some recently proposed overlapping community detection methods are global methods with high computational cost. Objective: To improve the accuracy and speed of community detection and obtain the fuzzy coefficients of overlapping nodes with low computational cost, a local fuzzy agglomerative method is proposed in this paper. Method: In the detection process, each local community is determined based on community strength. The overlapping communities and fuzzy coefficients of nodes are obtained by coordinating and normalizing the contribution of the overlapping nodes to their belonging communities. Results: Theoretical analysis and data simulations show that our local method can detect disjoint and overlapping communities in linear time with the network size. The overlapping communities and the fuzzy coefficients of overlapping nodes are obtained accurately. Conclusion: The accuracy of our method is higher than the existing local methods for detecting disjoint communities. And it also performs as well as the global overlapping methods on detecting overlapping communities but with remarkably low computational cost.


Filomat ◽  
2018 ◽  
Vol 32 (5) ◽  
pp. 1559-1570 ◽  
Author(s):  
Dongming Chen ◽  
Wei Zhao ◽  
Dongqi Wang ◽  
Xinyu Huang

Local community detection aims to obtain the local communities to which target nodes belong, by employing only partial information of the network. As a commonly used network model, bipartite applies naturally when modeling relations between two different classes of objects. There are three problems to be solved in local community detection, such as initial core node selection, expansion approach and community boundary criteria. In this work, a similarity based local community detection algorithm for bipartite networks (SLCDB) is proposed, and the algorithm can be used to detect local community structure by only using either type of nodes of a bipartite network. Experiments on real data prove that SLCDB algorithms output community structure can achieve a very high modularity which outperforms most existing local community detection methods for bipartite networks.


Author(s):  
Ge Zhang ◽  
Di Jin ◽  
Jian Gao ◽  
Pengfei Jiao ◽  
Françoise Fogelman-Soulié ◽  
...  

Using network topology and semantic contents to find topic-related communities is a new trend in the field of community detection. By analyzing texts in social networks, we find that topics in networked contents are often hierarchical. In most cases, they have a two-level semantic structure with general and specialized topics, to respectively denote common and specific interests of communities. However, the existing community detection methods ignore such a hierarchy and take all words used to describe node semantics from an identical perspective. This indiscriminate use of words leads to natural defects in depicting networked content in which the deep semantics is not fully utilized. To address this problem, we propose a novel probabilistic generative model. By distinguishing the general and specialized topics of words, our model not only can find community structures more accurately, but also provide two-level semantic interpretation for each community. We train the model by deriving an efficient inference method under the framework of variational expectation-maximization. We provide a case study to show the ability of our algorithm in deep semantic interpretability of communities. The superiority of our algorithm for community detection is further demonstrated in comparison with eight state-of-the-art algorithms on eight real-world networks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


2020 ◽  
Vol 10 (1) ◽  
pp. 164-174
Author(s):  
Theyvaa Sangkaran ◽  
Azween Abdullah ◽  
NZ Jhanjhi

AbstractAll highly centralised enterprises run by criminals do share similar traits, which, if recognised, can help in the criminal investigative process. While conducting a complex confederacy investigation, law enforcement agents should not only identify the key participants but also be able to grasp the nature of the inter-connections between the criminals to understand and determine the modus operandi of an illicit operation. We studied community detection in criminal networks using the graph theory and formally introduced an algorithm that opens a new perspective of community detection compared to the traditional methods used to model the relations between objects. Community structure, generally described as densely connected nodes and similar patterns of links is an important property of complex networks. Our method differs from the traditional method by allowing law enforcement agencies to be able to compare the detected communities and thereby be able to assume a different viewpoint of the criminal network, as presented in the paper we have compared our algorithm to the well-known Girvan-Newman. We consider this method as an alternative or an addition to the traditional community detection methods mentioned earlier, as the proposed algorithm allows, and will assists in, the detection of different patterns and structures of the same community for enforcement agencies and researches. This methodology on community detection has not been extensively researched. Hence, we have identified it as a research gap in this domain and decided to develop a new method of criminal community detection.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-20
Author(s):  
Georg Steinbuss ◽  
Klemens Böhm

Benchmarking unsupervised outlier detection is difficult. Outliers are rare, and existing benchmark data contains outliers with various and unknown characteristics. Fully synthetic data usually consists of outliers and regular instances with clear characteristics and thus allows for a more meaningful evaluation of detection methods in principle. Nonetheless, there have only been few attempts to include synthetic data in benchmarks for outlier detection. This might be due to the imprecise notion of outliers or to the difficulty to arrive at a good coverage of different domains with synthetic data. In this work, we propose a generic process for the generation of datasets for such benchmarking. The core idea is to reconstruct regular instances from existing real-world benchmark data while generating outliers so that they exhibit insightful characteristics. We propose and describe a generic process for the benchmarking of unsupervised outlier detection, as sketched so far. We then describe three instantiations of this generic process that generate outliers with specific characteristics, like local outliers. To validate our process, we perform a benchmark with state-of-the-art detection methods and carry out experiments to study the quality of data reconstructed in this way. Next to showcasing the workflow, this confirms the usefulness of our proposed process. In particular, our process yields regular instances close to the ones from real data. Summing up, we propose and validate a new and practical process for the benchmarking of unsupervised outlier detection.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750121 ◽  
Author(s):  
Fang Hu ◽  
Youze Zhu ◽  
Yuan Shi ◽  
Jianchao Cai ◽  
Luogeng Chen ◽  
...  

In this paper, based on Walktrap algorithm with the idea of random walk, and by selecting the neighbor communities, introducing improved signed probabilistic mixture (SPM) model and considering the edges within the community as positive links and the edges between the communities as negative links, a novel algorithm Walktrap-SPM for detecting overlapping community is proposed. This algorithm not only can identify the overlapping communities, but also can greatly increase the objectivity and accuracy of the results. In order to verify the accuracy, the performance of this algorithm is tested on several representative real-world networks and a set of computer-generated networks based on LFR benchmark. The experimental results indicate that this algorithm can identify the communities accurately, and it is more suitable for overlapping community detection. Compared with Walktrap, SPM and LMF algorithms, the presented algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SPM and LMF algorithms.


2018 ◽  
Vol 32 (14) ◽  
pp. 1850166 ◽  
Author(s):  
Lilin Fan ◽  
Kaiyuan Song ◽  
Dong Liu

Semi-supervised community detection is an important research topic in the field of complex network, which incorporates prior knowledge and topology to guide the community detection process. However, most of the previous work ignores the impact of the noise from prior knowledge during the community detection process. This paper proposes a novel strategy to identify and remove the noise from prior knowledge based on harmonic function, so as to make use of prior knowledge more efficiently. Finally, this strategy is applied to three state-of-the-art semi-supervised community detection methods. A series of experiments on both real and artificial networks demonstrate that the accuracy of semi-supervised community detection approach can be further improved.


Sign in / Sign up

Export Citation Format

Share Document