scholarly journals A new theory of fractional differential calculus

2021 ◽  
pp. 1-36
Author(s):  
Xiaobing Feng ◽  
Mitchell Sutton

This paper presents a self-contained new theory of weak fractional differential calculus in one-dimension. The crux of this new theory is the introduction of a weak fractional derivative notion which is a natural generalization of integer order weak derivatives; it also helps to unify multiple existing fractional derivative definitions and characterize what functions are fractionally differentiable. Various calculus rules including a fundamental theorem calculus, product and chain rules, and integration by parts formulas are established for weak fractional derivatives. Additionally, relationships with classical fractional derivatives and detailed characterizations of weakly fractional differentiable functions are also established. Furthermore, the notion of weak fractional derivatives is also systematically extended to general distributions instead of only to some special distributions. This new theory lays down a solid theoretical foundation for systematically and rigorously developing new theories of fractional Sobolev spaces, fractional calculus of variations, and fractional PDEs as well as their numerical solutions in subsequent works.

2021 ◽  
Vol 5 (1) ◽  
pp. 279-287
Author(s):  
Zeinab Toghani ◽  
◽  
Luis Gaggero-Sager ◽  

There are many possible definitions of derivatives, here we present some and present one that we have called generalized that allows us to put some of the others as a particular case of this but, what interests us is to determine that there is an infinite number of possible definitions of fractional derivatives, all are correct as differential operators each of them must be properly defined its algebra. We introduce a generalized version of fractional derivative that extends the existing ones in the literature. To those extensions it is associated a differentiable operator and a differential ring and applications that shows the advantages of the generalization. We also review the different definitions of fractional derivatives and it is shown how the generalized version contains the previous ones as a particular cases.


Author(s):  
Orkun Tasbozan ◽  
Alaattin Esen

Abstract In this study, we investigate numerical solutions of the fractional telegraph equation with the aid of cubic B-spline collocation method. The fractional derivatives have been considered in the Caputo forms. The L1and L2 formulae are used to discretize the Caputo fractional derivative with respect to time. Some examples have been given for determining the accuracy of the regarded method. Obtained numerical results are compared with exact solutions arising in the literature and the error norms L 2 and L ∞ have been computed. In addition, graphical representations of numerical results are given. The obtained results show that the considered method is effective and applicable for obtaining the numerical results of nonlinear fractional partial differential equations (FPDEs).


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


2021 ◽  
Author(s):  
Zaid Odibat

Abstract This study introduces some remarks on generalized fractional integral and differential operators, that generalize some familiar fractional integral and derivative operators, with respect to a given function. We briefly explain how to formulate representations of generalized fractional operators. Then, mainly, we propose a predictor-corrector algorithm for the numerical simulation of initial value problems involving generalized Caputo-type fractional derivatives with respect to another function. Numerical solutions of some generalized Caputo-type fractional derivative models have been introduced to demonstrate the applicability and efficiency of the presented algorithm. The proposed algorithm is expected to be widely used and utilized in the field of simulating fractional-order models.


Author(s):  
Rawid Banchuin

In this chapter, the authors report their work on the application of fractional derivative to the study of the memristor dynamic where the effects of the parasitic fractional elements of the memristor have been studied. The fractional differential equations of the memristor and the memristor-based circuits under the effects of the parasitic fractional elements have been formulated and solved both analytically and numerically. Such effects of the parasitic fractional elements have been studied via the simulations based on the obtained solutions where many interesting results have been proposed in the work. For example, it has been found that the parasitic fractional elements cause both charge and flux decay of the memristor and the impasse point breaking of the phase portraits between flux and charge of the memristor-based circuits similarly to the conventional parasitic elements. The effects of the order and the nonlinearity of the parasitic fractional elements have also been reported.


2012 ◽  
Vol 1 ◽  
pp. 1-25 ◽  
Author(s):  
Langhua Hu ◽  
Duan Chen ◽  
Guo-Wei Wei

AbstractFractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.


2018 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
H. Yépez-Martínez ◽  
J.F. Gómez-Aguilar

Analytical and numerical simulations of nonlinear fractional differential equations are obtained with the application of the homotopy perturbation transform method and the fractional Adams-Bashforth-Moulton method. Fractional derivatives with non singular Mittag-Leffler function in Liouville-Caputo sense and the fractional derivative of Liouville-Caputo type are considered. Some examples have been presented in order to compare the results obtained, classical behaviors are recovered when the derivative order is 1.


Author(s):  
B. N. Narahari Achar ◽  
Carl F. Lorenzo ◽  
Tom T. Hartley

The importance of proper initialization in taking into account the history of a system whose time evolution is governed by a differential equation of fractional order, has been established by Lorenzo and Hartley, who also gave the method of properly incorporating the effect of the past (history) by means of an initialization function for the Riemann-Liouville and the Grunwald formulations of fractional calculus. The present work addresses this issue for the Caputo fractional derivative and cautions that the commonly held belief that the Caputo formulation of fractional derivatives properly accounts for the initialization effects is not generally true when applied to the solution of fractional differential equations.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muath Awadalla ◽  
Yves Yameni Noupoue Yannick ◽  
Kinda Abu Asbeh

This work is dedicated to the study of the relationship between altitude and barometric atmospheric pressure. There is a consistent literature on this relationship, out of which an ordinary differential equation with initial value problems is often used for modeling. Here, we proposed a new modeling technique of the relationship using Caputo and Caputo–Fabrizio fractional differential equations. First, the proposed model is proven well-defined through existence and uniqueness of its solution. Caputo–Fabrizio fractional derivative is the main tool used throughout the proof. Then, follow experimental study using real world dataset. The experiment has revealed that the Caputo fractional derivative is the most appropriate tool for fitting the model, since it has produced the smallest error rate of 1.74% corresponding to the fractional order of derivative α  = 1.005. Caputo–Fabrizio was the second best since it yielded an error rate value of 1.97% for a fractional order of derivative α  = 1.042, and finally the classical method produced an error rate of 4.36%.


Author(s):  
Gerd Baumann ◽  
Frank Stenger

AbstractFractional integrals, fractional derivatives, fractional integral equations, and fractional differential equations are numerically solved by Sinc methods. Sinc methods are able to deal with singularities of the weakly singular integral equations of Riemann-Liouville and Caputo type. The convergence of the numerical method is numerically examined and shows exponential behavior. Different examples are used to demonstrate the effective derivation of numerical solutions for different types of fractional differential and integral equations, linear and non-linear ones. Equations of mixed ordinary and fractional derivatives, integro-differential equations are solved using Sinc methods. We demonstrate that the numerical calculation needed in fractional calculus can be gained with high accuracy using Sinc methods.


Sign in / Sign up

Export Citation Format

Share Document