CATIONIC BOLAAMPHIPHILES FOR GENE DELIVERY

COSMOS ◽  
2014 ◽  
Vol 10 (01) ◽  
pp. 25-38 ◽  
Author(s):  
AMELIA LI MIN TAN ◽  
ALISA XUE LING LIM ◽  
YITING ZHU ◽  
YI YAN YANG ◽  
MAJAD KHAN

Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

2020 ◽  
Vol 27 (8) ◽  
pp. 698-710
Author(s):  
Roya Cheraghi ◽  
Mahboobeh Nazari ◽  
Mohsen Alipour ◽  
Saman Hosseinkhani

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.


Author(s):  
A. A. Mikheev ◽  
E. V. Shmendel ◽  
E. S. Zhestovskaya ◽  
G. V. Nazarov ◽  
M. A. Maslov

Objectives. Gene therapy is based on the introduction of genetic material into cells, tissues, or organs for the treatment of hereditary or acquired diseases. A key factor in the success of gene therapy is the development of delivery systems that can efficiently transfer genetic material to the place of their therapeutic action without causing any associated side effects. Over the past 10 years, significant effort has been directed toward creating more efficient and biocompatible vectors capable of transferring nucleic acids (NAs) into cells without inducing an immune response. Cationic liposomes are among the most versatile tools for delivering NAs into cells; however, the use of liposomes for gene therapy is limited by their low specificity. This is due to the presence of various biological barriers to the complex of liposomes with NA, including instability in biological fluids, interaction with serum proteins, plasma and nuclear membranes, and endosomal degradation. This review summarizes the results of research in recent years on the development of cationic liposomes that are effective in vitro and in vivo. Particular attention is paid to the individual structural elements of cationic liposomes that determine the transfection efficiency and cytotoxicity. The purpose of this review was to provide a theoretical justification of the most promising choice of cationic liposomes for the delivery of NAs into eukaryotic cells and study the effect of the composition of cationic lipids (CLs) on the transfection efficiency in vitro.Results. As a result of the analysis of the related literature, it can be argued that one of the most promising delivery systems of NAs is CL based on cholesterol and spermine with the addition of a helper lipid DOPE. In addition, it was found that varying the composition of cationic liposomes, the ratio of CL to NA, or the size and zeta potential of liposomes has a significant effect on the transfection efficiency.Conclusions. Further studies in this direction should include optimization of the conditions for obtaining cationic liposomes, taking into account the physicochemical properties and established laws. It is necessary to identify mechanisms that increase the efficiency of NA delivery in vitro by searching for optimal structures of cationic liposomes, determining the ratio of lipoplex components, and studying the delivery efficiency and properties of multicomponent liposomes.


2019 ◽  
Vol 20 (21) ◽  
pp. 5491 ◽  
Author(s):  
Patil ◽  
Gao ◽  
Lin ◽  
Li ◽  
Dang ◽  
...  

Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.


Nano LIFE ◽  
2010 ◽  
Vol 01 (03n04) ◽  
pp. 219-237 ◽  
Author(s):  
SHARDOOL JAIN ◽  
HUSAIN ATTARWALA ◽  
MANSOOR AMIJI

Gene therapy holds tremendous promise in prevention and treatment of diseases as the approach is based on regulating the expression of genes that are responsible for pathological conditions. The biggest bottleneck for gene delivery has been the development of safe and efficacious delivery systems. Although non-viral vectors are considered as much safer options than their viral counterparts, they suffer from low transfection efficiency. In this review, we highlight the role of non-condensing polymeric delivery systems for oral and systemic gene delivery. Using evidence from contemporary literature, non-condensing polymeric microparticle and nanoparticle systems afford physical encapsulation of the nucleic acid construct and can be engineered for targeted delivery to tissues and cells. Additionally, these systems have shown less toxicity and afford sustained cytoplasmic DNA delivery for efficient nuclear uptake and transfection for both DNA vaccines and therapeutic genes.


2005 ◽  
Vol 4 (6) ◽  
pp. 615-625 ◽  
Author(s):  
Sushma Kommareddy ◽  
Sandip B. Tiwari ◽  
Mansoor M. Amiji

Significant advances in the understanding of the genetic abnormalities that lead to the development, progression, and metastasis of neoplastic diseases has raised the promise of gene therapy as an approach to medical intervention. Most of the clinical protocols that have been approved in the United States for gene therapy have used the viral vectors because of the high efficiency of gene transfer. Conventional means of gene delivery using viral vectors, however, has undesirable side effects such as insertion of mutational viral gene into the host genome and development of replication competent viruses. Among non-viral gene delivery methods, polymeric nanoparticles are increasingly becoming popular as vectors of choice. The major limitation of these nanoparticles is poor transfection efficiency at the target site after systemic administration due to uptake by the cells of reticuloendothelial system (RES). In order to reduce the uptake by the cells of the RES and improve blood circulation time, these nanoparticles are coated with hydrophilic polymers such as poly(ethylene glycol) (PEG). This article reviews the use of such hydrophilic polymers employed for improving the circulation time of the nanocarriers. The mechanism of polymer coating and factors affecting the circulation time of these nanocarriers will be discussed. In addition to the long circulating property, modifications to improve the target specificity of the particles and the limitations of steric protection will be analyzed.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 930 ◽  
Author(s):  
Henning Madry ◽  
Jagadeesh Kumar Venkatesan ◽  
Natalia Carballo-Pedrares ◽  
Ana Rey-Rico ◽  
Magali Cucchiarini

Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ana V. Oliveira ◽  
Diogo B. Bitoque ◽  
Gabriela A. Silva

The low gene transfer efficiency of chitosan-DNA polyplexes is a consequence of their high stability and consequent slow DNA release. The incorporation of an anionic polymer is believed to loosen chitosan interactions with DNA and thus promote higher transfection efficiencies. In this work, several formulations of chitosan-DNA polyplexes incorporating hyaluronic acid were prepared and characterized for their gene transfection efficiency on both HEK293 and retinal pigment epithelial cells. The different polyplex formulations showed morphology, size, and charge compatible with a role in gene delivery. The incorporation of hyaluronic acid rendered the formulations less stable, as was the goal, but it did not affect the loading and protection of the DNA. Compared with chitosan alone, the transfection efficiency had a 4-fold improvement, which was attributed to the presence of hyaluronic acid. Overall, our hybrid chitosan-hyaluronic acid polyplexes showed a significant improvement of the efficiency of chitosan-based nonviral vectorsin vitro, suggesting that this strategy can further improve the transfection efficiency of nonviral vectors.


2017 ◽  
Vol 5 (4) ◽  
pp. 718-729 ◽  
Author(s):  
Yi-Mei Zhang ◽  
Zheng Huang ◽  
Ji Zhang ◽  
Wan-Xia Wu ◽  
Yan-Hong Liu ◽  
...  

Ring-opening polymerization was found to be a promising strategy to improve the transfection efficiency and serum tolerance of cationic lipids.


Sign in / Sign up

Export Citation Format

Share Document