Static- and frequency-dependent NLO properties of dithienothiophene and thienothiophene bridges — A computational investigation

2020 ◽  
Vol 19 (05) ◽  
pp. 2050018
Author(s):  
Sagar B. Yadav ◽  
Nagaiyan Sekar

We have explored detailed linear and nonlinear optical properties of push-pull systems bearing thienothiophene and dithienothiophene spacers. By using density functional theory (DFT), frequency-dependent strategies were applied to examine the polarizability ([Formula: see text] and hyperpolarizability ([Formula: see text] and [Formula: see text]. The set of global and range-separated hybrid functionals with different Hartree–Fock (HF) exchange percentage at two basis sets cc-pVDZ and cc-pVTZ were used to evaluate the nonlinear optical (NLO) properties. The observed trends in the absorption maxima supported by perturbation potential analysis; as the absorption maxima increases, the respective amplitude potential decreases. For the investigated compounds, [Formula: see text]-conjugation along with the type of substituted acceptor plays a crucial role in the enhancement of NLO properties. The presence of acceptor group and length of conjugation increase between the D and A group; the first- and second-order intrinsic hyperpolarizability increases, leads to enhanced first- as well as second-order hyperpolarizability. Bond length alternation (BLA)/bond order alteration (BOA) exploration suggested that compounds attain cyanine limit. The trends in NLO properties for investigated compounds are supported by chemical reactivity descriptors, hardness and hyperhardness analysis. The polarizability is linearly correlated with the hyperpolarizability parameters ([Formula: see text] and [Formula: see text] and shows a good regression coefficient by figures of merit analysis.

2012 ◽  
Vol 11 (01) ◽  
pp. 209-221 ◽  
Author(s):  
ASLI KARAKAŞ ◽  
ZİYA ERDEM KOÇ ◽  
MICHAELA FRIDRICHOVÁ ◽  
PETR NĚMEC ◽  
JAN KROUPA

p-nitrophenylazoaniline (1) belongs to the family of compounds with conjugated bonds and delocalized π-electrons, structurally similar to the well known push-pull compound Disperse Red 1 (DR1).1 Due to the assembly of the molecule, nonlinear optical (NLO) properties are expectable and can be more or less accurately predicted. To estimate the potential for second-order NLO properties, the electric dipole moment (μ), dispersion-free dipole polarizabilities (α) and first hyperpolarizabilities (β) have been determined by density functional theory (DFT) quantum chemical calculations at B3LYP/ 6-311 + G(d, p) level. According to the computation results, the synthesized compound exhibits non-zero β values and it might have second-order NLO behavior. Title compound has been synthesized and characterized by FT-IR, 1H-NMR and UV-Vis spectroscopies. The maximum one-photon absorption (OPA) wavelengths were estimated to be shorter than 450 nm by quantum mechanical computations using the configuration interaction (CI) method. The same result was achieved by UV-Vis spectra measurements, whereas the compound exhibited good optical transparency to the visible light. Quantitative measurements of second harmonic generation (SHG) at 800 nm and 1064 nm have been performed. The relative efficiency comparable with that of KDP (kalium diphosphate) has been observed with the exciting wavelength of 1064 nm, while the other wavelength led to strong absorption of produced light by the sample. In the following more detailed study on frequency-dependent first hyperpolarizabilities using time-dependent Hartree–Fock (TDHF) method have been computed at the wavelengths used in SHG measurements.


2007 ◽  
Vol 06 (03) ◽  
pp. 585-594 ◽  
Author(s):  
YONGQING QIU ◽  
XIAOHONG WANG ◽  
YICHUN LIU ◽  
GUOCHUN YANG ◽  
HUI CHEN

Time-dependent density functional theory (TD-DFT) formalism is employed to calculate the electronic spectra of A 3 B 3 II–VI semiconductor clusters based on the geometrical structures optimized at DFT-B3LYP level. Moreover, their second-order nonlinear optical (NLO) properties are performed by TD-B3LYP combined with sum-over-states (SOS) formula. The calculation results indicate that it is necessary to consider the effective core potential and electron correlation effects when the basis sets are chosen for the heavy atoms. In addition, the results show that the transition energies and HOMO–LUMO gaps of the A 3 B 3 II–VI semiconductor clusters decrease, while the second-order nonlinear optical responses increase with the increasing of VI-group ionic radius. As a result, the SOS formula is valuable to calculate the βμ in the summation of 120 states. Meanwhile, charge transfers from the π bonding to π anti-bonding orbitals between II and VI group atoms significantly contribute to the second-order NLO properties.


2017 ◽  
Vol 730 ◽  
pp. 106-111
Author(s):  
Xiao Jing Liu ◽  
Xin Sun ◽  
Jing Hua Guo

In this work, density functional theory (DFT) calculations with B3LYP/6-311++G(d,p) basis sets was used to explore the electronic, structural, nonlinear optical and thermal properties aspects of glycine-phthalic acid (GPA) optical materials. Dipole moment, static polarizability and first hyperpolarizability analysis of the molecule have been performed. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. MEP study confirms GPA as an electron rich species and explains its electrophilic nature. MEP shows that this molecule has several possible sites for electrophilic/nucleophilic attack in which V(r) calculations provide insights into the order of preference. The low value of HOMO-LUMO energy gap reflects the high chemical reactivity, low chemical stability and hardness of GPA molecule. Thermodynamic properties of the title compound have been calculated at different temperatures and the results reveal that the standard heat capacities (Cp), standard entropies (S) and standard enthalpy (H) increase with rise in temperature. These results discussed in this study will upsurge the knowledge to design and synthesize new type nonlinear optical materials with exceptional chemical and physical properties.


Author(s):  
Vinayak P. Deshmukh

In this work, density functional theory (DFT) combined with the finite field (FF) method has been adopted to study the molecular structure, vibrational assignments and nonlinear optical (NLO) properties of borazine. The geometrical parameters, vibrational frequencies and NLO properties have been obtained at B3LYP/6-311++G** level of theory. The optimized geometries and vibrational frequencies for borazine are in excellent agreement with the available experimental determinations. The B-N stretching mode observed is the most intense vibrational mode for borazine. The NLO properties of borazine have been investigated by using finite field method. The β and γ values are calculated at field strength of 0.006 a.u. for borazine using different methods and different basis sets.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua Janjua

In this study, the energy gaps, second-order nonlinear optical (NLO) properties and dipole polarizabilities of triphenylamine based α-cyanocinnamic acid acetylene derivatives have been investigated via using time-dependent density functional response theory. These compounds were designed theoretically by fluorine (F) atom substitution at different positions of phenyl ring end of the α-cyanocinnamic acid segment. The results have indicated that the systems substituted by fluorine show remarkable NLO second-order response, especially D4 system with computed static second-order polarizability (βtot) of 70537.95 (a.u). Hence, these materials have the likelihood to be an excellent second-order nonlinear optical (NLO) materials. The βtot value suggests that along the x-axis the charge transfer (CT) from triphenylamine to α-cyanocinnamic acid (D-A) plays a key role in NLO response; whereas α-cyanocinnamic acid acts as an acceptor (A) and triphenylamine acts as a donor (D) in all the studied systems. Incorporation of an electron acceptor (F) at the phenyl ring end of the α-cyanocinnamic acid segment increases the computed βtot values. The present investigation therefore provides an important insight into the remarkably greater NLO properties of α-cyanocinnamic acid and triphenylamine attached via acetylene.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950022
Author(s):  
Xiao-Yun Liu ◽  
Zhi-Yuan Shi ◽  
Jin-Ting Ye ◽  
Hui-Ying Wang ◽  
Hong-Qiang Wang ◽  
...  

The electronic structure and the nonlinear optical (NLO) properties of a series of platinum-sensitized dithienylethenes (DTEs) were investigated by using the density functional theory (DFT) method. DFT calculations reveal that the second-order NLO properties of complexes significantly increase with the DTE ligand being directly linked with terpyridine–Pt(II) complexes. Due to the good [Formula: see text]-conjugated characteristics, closed-ring complexes possess much larger second-order NLO properties than the corresponding open-ring complexes. The computational [Formula: see text] values are in the order of 3c ([Formula: see text] esu) [Formula: see text] 3o ([Formula: see text] esu) [Formula: see text] 4c ([Formula: see text] esu) [Formula: see text] 4o ([Formula: see text] esu) [Formula: see text] 1 ([Formula: see text] esu) [Formula: see text] 2c ([Formula: see text] esu) [Formula: see text] 2o ([Formula: see text] esu). Among all calculated platinum-sensitized dithienylethenes, 3c has the largest second-order NLO properties. The 4c and 4o have almost the same [Formula: see text] values and the [Formula: see text] value of 4o is slightly larger than that of 2o because the ether bonds can significantly prevent charge transfer within the complexes.


2006 ◽  
Vol 05 (02) ◽  
pp. 223-233 ◽  
Author(s):  
F. E. JORGE ◽  
L. M. BERNARDO ◽  
E. P. MUNIZ

The performance of the previously proposed double zeta valence quality plus polarization functions (DZP) and augmented DZP (ADZP) basis sets is tested at the Hartree–Fock, second-order Møller–Plesset, and density functional levels of theory for the electronic ground state of the second-row diatomic hydrides. Total energy, second-order correlation energy, dissociation energy, bond length, vibrational frequency, and dipole moment are calculated and compared with results obtained with popular basis sets reported in the literature. It is shown that the DZP and ADZP basis sets in general provides better accuracy for a similar number of basis functions.


2019 ◽  
Vol 960 ◽  
pp. 268-273
Author(s):  
Qi Li ◽  
Xiu Hua Yuan

In this study, density functional theory (DFT) was used to calculate second-order polarizabilities and second-order polarizabilities densities of a series of organic substitution for Lindqvist-type polyoxometalates (POMs), and the nonlinear optical (NLO) properties was also analyzed. We found that βzzz has the main contribution to β value. The expansion of molecular structure on z-axis greatly increased second-order polarizabilities. Both the size of the organic segments and metal hybridization exert an influence on β value. The analysis on the second-order polarizabilities density is used to explain the NLO phenomenon. In the present investigation, metal hybridization and π-conjugation changed the contribution of βzzz value from different parts. The results of this work will contribute to the potential applications in high-performance NLO materials.


2020 ◽  
Vol 18 (1) ◽  
pp. 857-873
Author(s):  
Kornelia Czaja ◽  
Jacek Kujawski ◽  
Radosław Kujawski ◽  
Marek K. Bernard

AbstractUsing the density functional theory (DFT) formalism, we have investigated the properties of some arylsulphonyl indazole derivatives that we studied previously for their biological activity and susceptibility to interactions of azoles. This study includes the following physicochemical properties of these derivatives: electronegativity and polarisability (Mulliken charges, adjusted charge partitioning, and iterative-adjusted charge partitioning approaches); free energy of solvation (solvation model based on density model and M062X functional); highest occupied molecular orbital (HOMO)–lowest occupied molecular orbital (LUMO) gap together with the corresponding condensed Fukui functions, time-dependent DFT along with the UV spectra simulations using B3LYP, CAM-B3LYP, MPW1PW91, and WB97XD functionals, as well as linear response polarisable continuum model; and estimation of global chemical reactivity descriptors, particularly the chemical hardness factor. The charges on pyrrolic and pyridinic nitrogen (the latter one in the quinolone ring of compound 8, as well as condensed Fukui functions) reveal a significant role of these atoms in potential interactions of azole ligand–protein binding pocket. The lowest negative value of free energy of solvation can be attributed to carbazole 6, whereas pyrazole 7 has the least negative value of this energy. Moreover, the HOMO–LUMO gap and chemical hardness show that carbazole 6 and indole 5 exist as soft molecules, while fused pyrazole 7 has hard character.


2007 ◽  
Vol 16 (01) ◽  
pp. 91-99 ◽  
Author(s):  
ASLI KARAKAS ◽  
HUSEYIN UNVER ◽  
AYHAN ELMALI

To investigate the microscopic second-order nonlinear optical (NLO) behavior of the 1-salicylidene-3-thio-semicarbazone Schiff base compound, the electric dipole moments (μ), linear static polarizabilities (α) and first static hyperpolarizabilites (β) have been calculated using finite field second-order Møller-Plesset perturbation (FF MP2) theory. The ab-initio results on (hyper)polarizabilities show that the investigated molecule might have microscopic NLO properties with non-zero values. To understand the NLO behavior in the context of molecular orbital structure, we have also examined the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and the HOMO-LUMO gap in the same theoretical framework as the (hyper)polarizability calculations. In addition to the NLO properties, the electronic transition spectra have been computed using a semi-empirical method (ZINDO). ZINDO calculation results show that the electronic transition wavelengths have been estimated to be shorter than 400 nm.


Sign in / Sign up

Export Citation Format

Share Document