Non Linear Optical, Thermodynamic Analysis and Spectroscopic Investigation of GPA Optical Materials

2017 ◽  
Vol 730 ◽  
pp. 106-111
Author(s):  
Xiao Jing Liu ◽  
Xin Sun ◽  
Jing Hua Guo

In this work, density functional theory (DFT) calculations with B3LYP/6-311++G(d,p) basis sets was used to explore the electronic, structural, nonlinear optical and thermal properties aspects of glycine-phthalic acid (GPA) optical materials. Dipole moment, static polarizability and first hyperpolarizability analysis of the molecule have been performed. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. MEP study confirms GPA as an electron rich species and explains its electrophilic nature. MEP shows that this molecule has several possible sites for electrophilic/nucleophilic attack in which V(r) calculations provide insights into the order of preference. The low value of HOMO-LUMO energy gap reflects the high chemical reactivity, low chemical stability and hardness of GPA molecule. Thermodynamic properties of the title compound have been calculated at different temperatures and the results reveal that the standard heat capacities (Cp), standard entropies (S) and standard enthalpy (H) increase with rise in temperature. These results discussed in this study will upsurge the knowledge to design and synthesize new type nonlinear optical materials with exceptional chemical and physical properties.

2020 ◽  
Vol 19 (05) ◽  
pp. 2050018
Author(s):  
Sagar B. Yadav ◽  
Nagaiyan Sekar

We have explored detailed linear and nonlinear optical properties of push-pull systems bearing thienothiophene and dithienothiophene spacers. By using density functional theory (DFT), frequency-dependent strategies were applied to examine the polarizability ([Formula: see text] and hyperpolarizability ([Formula: see text] and [Formula: see text]. The set of global and range-separated hybrid functionals with different Hartree–Fock (HF) exchange percentage at two basis sets cc-pVDZ and cc-pVTZ were used to evaluate the nonlinear optical (NLO) properties. The observed trends in the absorption maxima supported by perturbation potential analysis; as the absorption maxima increases, the respective amplitude potential decreases. For the investigated compounds, [Formula: see text]-conjugation along with the type of substituted acceptor plays a crucial role in the enhancement of NLO properties. The presence of acceptor group and length of conjugation increase between the D and A group; the first- and second-order intrinsic hyperpolarizability increases, leads to enhanced first- as well as second-order hyperpolarizability. Bond length alternation (BLA)/bond order alteration (BOA) exploration suggested that compounds attain cyanine limit. The trends in NLO properties for investigated compounds are supported by chemical reactivity descriptors, hardness and hyperhardness analysis. The polarizability is linearly correlated with the hyperpolarizability parameters ([Formula: see text] and [Formula: see text] and shows a good regression coefficient by figures of merit analysis.


2020 ◽  
Vol 18 (11) ◽  
pp. 825-841
Author(s):  
D. C. Mary Glory ◽  
K. Sambathkumar ◽  
R. Madivanane ◽  
R. Gayathri ◽  
C. Lourdu Edison Raj ◽  
...  

The N-(4-Cholorobenzoyl)Fenamic acid crystal have been grown, the structural and the lattice parameters are found through XRD analysis. The chemical bonding and their nature analysis was performed from the FTIR and FT-Raman spectra’s. The molecular structure optimized through DFT (Density Functional Theory) computations and correlated through experimental one. From the optimized geometry from the computations provide to the structural, frequencies and other parameters are match with experiments. From hyper-conjugative interactions, charge delocalization used to study the stabile nature of molecules through NBO analysis. The thermodynamic properties are linearly deepened with temperature. And susceptibility of the crystal can be performed is found to decrease at different temperatures is calculated. The spectral analysis agreed well with experiments.


Author(s):  
R. Solaichamy ◽  
J. Karpagam

In the present study, we report on the Molecular structure and infrared (IR) and FT-Raman studies of Voglibose (VGB) as well as by calculations based on the density functional theory (DFT) approach; utilizing B3LYP/6-31G(d,p) basis set. The targeted interpretation of the vibrational spectra intended to the basis of calculated potential energy distribution matrix (PED) utilizing VEDA4 program. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital (NBO) analysis. The results show that change in electron density in the σ∗and π∗antibonding orbitals and E2energies confirm the occurrence of intramolecular charge transfer within the molecule. The UV-Visible and NMR spectral analysis were reported by using TD-DFT and gauge GIAO approach respectively and their chemical shifts related to TMS were compared. The lowering of HOMO and LUMO energy gap appears to be the cause for its enhanced charge transfer interactions. Besides, molecular electrostatic potential (MEP) analysis was reported. Due to different potent biological properties, the molecular docking results are also reported.


2017 ◽  
Vol 95 (4) ◽  
pp. 353-360
Author(s):  
Xiao-Hong Li ◽  
Hong-Ling Cui ◽  
Rui-Zhou Zhang

The density functional theory method was used to calculate the vibrational spectrum, geometrical structure of 1-(4-chloro phenyl)-3-(4-dimethylamino phenyl) prop-2-en-1-one in the ground state. The analysis of natural bond orbital (NBO) was also performed. The infrared spectrum was obtained and interpreted by means of potential energies distributions. NBO analysis shows that electron donation from LP(1)N atom to the anti-bonding acceptor σ*(C6–C12) of the phenyl ring results in the stabilization of 43.9 kJ/mol. The predicted NLO properties show that the βtot of the title compound is larger than that of urea and is a good candidate as a nonlinear optical material. In addition, the frontier molecular orbital is also investigated. The high βtot value and the low HOMO–LUMO energy gap assert the suitability of the grown crystal for NLO applications.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 88-97 ◽  
Author(s):  
Tahar Abbaz ◽  
Amel Bendjeddou ◽  
Didier Villemin

The optimized molecular structure and electronic features of aryl sulfonyl piperazine derivatives 1-4 have been investigated theoretically using Gaussian 09 software package and DFT/B3LYP method with 6-31G (d,p) basis set. The reactivity of the title molecules was investigated and both the positive and negative centers of the molecules were identified using molecular electrostatic potential (MEP) analysis which the results illustrate that the regions reveal the negative electrostatic potential are localized in sulfamide function while the regions presenting the positive potential are localized in the hydrogen atoms. The energies of the frontier molecular orbitals and LUMO-HOMO energy gap are measured to explain the electronic transitions. Global reactivity parameters of the aryl sulfonyl piperazine derivatives molecules were predicted to find that the more reactive and softest compound is the compound 3. Mulliken’s net charges have been calculated and results show that 3N is the more negative and 33S is the more positive charge, which Indicates extensive charge delocalization in the entire molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization (π→π transitions) has been analyzed using NBO analysis. Fist hyperpolarizability is calculated in order to find its importance in non-linear optics and the results show that the studied molecules have not the NLO applications. Keywords: sulfamide; density functional theory; computational chemistry; electronic structure; quantum chemical calculations.


2015 ◽  
Vol 8 (2) ◽  
pp. 2122-2134
Author(s):  
Sarvendra Kumar ◽  
Rajesh Kumar ◽  
Jayant Teotia ◽  
M. K. Yadav

In the present work, UV- Visible spectra of 2-Chloro-3,4-Dimethoxybenzaldehyde (2,3,4-CDMB) compound  have been carried out experimentally and theoretically. The ultraviolet absorption spectrum of title compound in three solvents (Acetone, Diethyl Ether, CCl4) of different polarity were examined in the range of 200–500 nm. The structure of the molecule was optimized and the structural characteristics were determined by HF and DFT (B3LYP) methods with 6-31+G(d,p) and 6-311++G(d,p) as basis sets. The excitation energy, wavelength corresponds to absorption maxima () and oscillator strength (f) are calculated by Time-Dependent Density Functional Theory (TD-DFT) using B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) as basis sets. The electric dipole moment (μ), polarizability (α) and the first hyperpolarizability (β ) have been computed to evaluate the non-linear optical (NLO) response of the investigated compound by HF and DFT (B3LYP) with already mentioned basis sets. Thermodynamic functions of the title compound at different temperatures were also calculated.


2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


Author(s):  
N. Daho ◽  
N. Benhalima ◽  
F. KHELFAOUI ◽  
O. SADOUKI ◽  
M. Elkeurti ◽  
...  

In this work, a comprehensive investigation of the salicylideneaniline derivatives is carried out using density functional theory to determine their linear and non-linear optical properties. Geometry optimizations, for gas and solvent phases, of the tautomers (enol and keto forms) are calculated using B3LYP levels with 6–31G (d,p) basis set . An intramolecular proton transfer, for 1SA-E and 2SA-E, is performed by a PES scan process at the B3LYP/6-31G (d,p) level. The optical properties are determined and show that they have extremely high nonlinear optical properties. In addition, the RDG analysis, MEP, and gap energy are calculated. The low energy gap value indicates the possibility of intramolecular charge transfer. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the first-order hyperpolarizability (β = 59.6471 × 10-30 esu), confirming that the salicylideneaniline derivatives can be used as attractive future NLO materials. Therefore, the reactive sites are predicted using MEP and the visible absorption maxima are analyzed using a theoretical UV–Vis spectrum. Natural bond orbitals are used to investigate the stability, charge delocalization, and intramolecular hydrogen bond.


Author(s):  
Rabiu Nuhu Muhammad ◽  
N. M. Mahraz ◽  
A. S Gidado ◽  
A. Musa

Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450023 ◽  
Author(s):  
Reza Ghiasi ◽  
Morteza Zaman Fashami ◽  
Amir Hossein Hakimioun

In this work, the interaction of C 20 with N 2 X 2 ( X = H , F , Cl , Br , Me ) molecules has been explored using the B3LYP, M062x methods and 6-311G(d,p) and 6-311+G(d,p) basis sets. The interaction energies (IEs) obtained with standard method were corrected by basis set superposition error (BSSE) during the geometry optimization for all molecules at the same levels of theory. It was found C 20… N 2 H 2 interaction is stronger than the interaction of other N 2 X 2 ( X = F , Cl , Br , Me ) with C 20. Highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively) levels are illustrated by density of states spectra (DOS). The nucleus-independent chemical shifts (NICSs) confirm that C 20… N 2 X 2 molecules exhibit aromatic characteristics. Geometries obtained from DFT calculations were used to perform NBO analysis. Also, 14 N NQR parameters of the C 20… N 2 X 2 molecules are predicted.


Sign in / Sign up

Export Citation Format

Share Document