Characterization of Debris Formed in Magnetic Field-Assisted EDM Using Two-Phase Dielectric Fluid

2020 ◽  
Vol 19 (04) ◽  
pp. 629-640
Author(s):  
Hardik Beravala ◽  
Pulak M. Pandey

The present research was focussed to investigate the influence of liquid-gaseous dielectric on debris formation in magnetic field-assisted electrical discharge machining. The air and argon gas were used to make two-phase dielectric fluids such as liquid-air and liquid-argon gas, respectively. Experimentation was conducted to compare the effect of different liquid-gaseous dielectric environments on debris formation. The morphology and diameter distribution of debris were analyzed. In addition, the effect on elemental analysis, phase transformation and magnetic property of debris was investigated. The experimental results showed the exothermic reaction due to air from liquid–air dielectric, and inert property of argon gas from liquid-gaseous dielectric affected the formation of debris. The XRD results confirmed the formation of oxides in the debris produced using liquid-air mixed dielectric. The oxide-free debris formed while using the argon gas. Low saturation of magnetization was found in the debris, formed in the liquid–air dielectric which showed the weak attraction toward magnet when compared with that in the liquid–argon gas mixed dielectric.

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 754 ◽  
Author(s):  
Asarudheen Abdudeen ◽  
Jaber E. Abu Qudeiri ◽  
Ansar Kareem ◽  
Thanveer Ahammed ◽  
Aiman Ziout

Electrical discharge machining (EDM) is an advanced machining method which removes metal by a series of recurring electrical discharges between an electrode and a conductive workpiece, submerged in a dielectric fluid. Even though EDM techniques are widely used to cut hard materials, low efficiency and high tool wear remain remarkable challenges in this process. Various studies, such as mixing different powders to dielectric fluids, are progressing to improve their efficiency. This paper reviews advances in the powder-mixed EDM process. Furthermore, studies about various powders used for the process and its comparison are carried out. This review looks at the objectives of achieving a more efficient metal removal rate, reduction in tool wear, and improved surface quality of the powder-mixed EDM process. Moreover, this paper helps researchers select suitable powders which are exhibiting better results and identifying different aspects of powder-mixed dielectric fluid of EDM.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1187
Author(s):  
Maria-Crina Radu ◽  
Raluca Tampu ◽  
Valentin Nedeff ◽  
Oana-Irina Patriciu ◽  
Carol Schnakovszky ◽  
...  

One main drawback of electrical discharge machining (EDM) is related to the dielectric fluid, since it impacts both the environment and operator health and safety. To resolve these issues, recent research has demonstrated the technical feasibility and qualitative performance of vegetable oils as substitutes for hydrocarbon-based dielectric and synthetic oils in EDM. However, due to the higher content of unsaturated fatty acids, vegetable oils lose their stability, due to several factors such as heating or exposure to light or oxygen. The present study is a first attempt to analyze the extent to which the physic-chemical properties of vegetable oils change during EDM processing. Refractive index, dynamic viscosity and spectra analyses were conducted for sunflower and soybean oils. The results revealed that, under the applied processing conditions, no structural changes occurred. These findings are very promising from the perspective of EDM sustainability.


2018 ◽  
Author(s):  
Munzarin Morshed ◽  
Syed Imtiaz ◽  
Mohammad Aziz Rahman

2020 ◽  
Vol 38 (8A) ◽  
pp. 1226-1235
Author(s):  
Safa R. Fadhil ◽  
Shukry. H. Aghdeab

Electrical Discharge Machining (EDM) is extensively used to manufacture different conductive materials, including difficult to machine materials with intricate profiles. Powder Mixed Electro-Discharge Machining (PMEDM) is a modern innovation in promoting the capabilities of conventional EDM. In this process, suitable materials in fine powder form are mixed in the dielectric fluid. An equal percentage of graphite and silicon carbide powders have been mixed together with the transformer oil and used as the dielectric media in this work. The aim of this study is to investigate the effect of some process parameters such as peak current, pulse-on time, and powder concentration of machining High-speed steel (HSS)/(M2) on the material removal rate (MRR), tool wear rate (TWR) and the surface roughness (Ra). Experiments have been designed and analyzed using Response Surface Methodology (RSM) approach by adopting a face-centered central composite design (FCCD). It is found that added graphite-silicon carbide mixing powder to the dielectric fluid enhanced the MRR and Ra as well as reduced the TWR at various conditions. Maximum MRR was (0.492 g/min) obtained at a peak current of (24 A), pulse on (100 µs), and powder concentration (10 g/l), minimum TWR was (0.00126 g/min) at (10 A, 100 µs, and 10 g/l), and better Ra was (3.51 µm) at (10 A, 50 µs, and 10 g/l).


1981 ◽  
Vol 46 (7) ◽  
pp. 1675-1681 ◽  
Author(s):  
Josef Baldrian ◽  
Božena N. Kolarz ◽  
Henrik Galina

Porosity variations induced by swelling agent exchange were studied in a styrene-divinylbenzene copolymer. Standard methods were used in the characterization of copolymer porosity in the dry state and the results were compared with related structural parameters derived from small angle X-ray scattering (SAXS) measurements as developed for the characterization of two-phase systems. The SAXS method was also used for porosity determination in swollen samples. The differences in the porosity of dry samples were found to be an effect of the drying process, while in the swollen state the sample swells and deswells isotropically.


Sign in / Sign up

Export Citation Format

Share Document