ENTANGLEMENT MEASURE OF BIPARTITE SYSTEM STATES

2010 ◽  
Vol 07 (06) ◽  
pp. 1051-1064 ◽  
Author(s):  
K. BERRADA ◽  
Y. HASSOUNI

Linear entropy as a measure of entanglement is applied to explain conditions for minimal and maximal entanglement of bipartite nonorthogonal pure states. We formulate this measure in terms of the amplitudes of coherent states in the case of entangled coherent states and calculate the conditions. We generalize this formalism to the case of bipartite mixed states and show that the entanglement measure is also a function of the probabilities.

2010 ◽  
Vol 21 (03) ◽  
pp. 291-305 ◽  
Author(s):  
K. BERRADA ◽  
M. El BAZ ◽  
H. ELEUCH ◽  
Y. HASSOUNI

In this paper, we investigate two different entanglement measures, the negativity and concurrence, in the case of pure and mixed states of two-qubit system basing on the spin coherent states. For two-qubit pure states, the negativity is the same as the concurrence. For mixed states, using a simplified expression of concurrence in Wootters' measure of entanglement, we write the bounds of Verstraete et al.1as a function of some new parameters and we compare the both measures for a class of mixed states.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 813
Author(s):  
Wei Wu ◽  
Jin Wang

Wave–particle duality as the defining characteristic of quantum objects is a typical example of the principle of complementarity. The wave–particle–entanglement (WPE) complementarity, initially developed for two-qubit systems, is an extended form of complementarity that combines wave–particle duality with a previously missing ingredient, quantum entanglement. For two-qubit systems in mixed states, the WPE complementarity was further completed by adding yet another piece that characterizes ignorance, forming the wave–particle–entanglement–ignorance (WPEI) complementarity. A general formulation of the WPEI complementarity can not only shed new light on fundamental problems in quantum mechanics, but can also have a wide range of experimental and practical applications in quantum-mechanical settings. The purpose of this study is to establish the WPEI complementarity for general multi-dimensional bipartite systems in pure or mixed states, and extend its range of applications to incorporate hierarchical and infinite-dimensional bipartite systems. The general formulation is facilitated by well-motivated generalizations of the relevant quantities. When faced with different directions of extensions to take, our guiding principle is that the formulated complementarity should be as simple and powerful as possible. We find that the generalized form of the WPEI complementarity contains unequal-weight averages reflecting the difference in the subsystem dimensions, and that the tangle, instead of the squared concurrence, serves as a more suitable entanglement measure in the general scenario. Two examples, a finite-dimensional bipartite system in mixed states and an infinite-dimensional bipartite system in pure states, are studied in detail to illustrate the general formalism. We also discuss our results in connection with some previous work. The WPEI complementarity for general finite-dimensional bipartite systems may be tested in multi-beam interference experiments, while the second example we studied may facilitate future experimental investigations on complementarity in infinite-dimensional bipartite systems.


2009 ◽  
Vol 07 (04) ◽  
pp. 829-846
Author(s):  
AVIJIT LAHIRI ◽  
GAUTAM GHOSH ◽  
SANKHASUBHRA NAG

We consider a class of entangled states of a quantum system (S) and a second system (A) where pure states of the former are correlated with mixed states of the latter, and work out the entanglement measure with reference to the nearest separable state. Such "pure-mixed" entanglement is expected when the system S interacts with a macroscopic measuring apparatus in a quantum measurement, where the quantum correlation is destroyed in the process of environment-induced decoherence whereafter only the classical correlation between S and A remains, the latter being large compared to the former. We present numerical evidence that the entangled S–A state drifts towards the nearest separable state through decoherence, with an additional tendency of equimixing among relevant groups of apparatus states.


2002 ◽  
Vol 2 (3) ◽  
pp. 208-221
Author(s):  
H. Jeong ◽  
M.S. Kim

We suggest an entanglement purification scheme for mixed entangled coherent states using 50-50 beam splitters and photodetectors. This scheme is directly applicable for mixed entangled coherent states of the Werner type, and can be useful for general mixed states using additional nonlinear interactions. We apply our scheme to entangled coherent states decohered in a vacuum environment and find the decay time until which they can be purified.


Quanta ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 22-36
Author(s):  
George Androulakis ◽  
Ryan McGaha

Gudder, in a recent paper, defined a candidate entanglement measure which is called the entanglement number. The entanglement number is first defined on pure states and then it extends to mixed states by the convex roof construction. In Gudder's article it was left as an open problem to show that Optimal Pure State Ensembles (OPSE) exist for the convex roof extension of the entanglement number from pure to mixed states. We answer Gudder's question in the affirmative, and therefore we obtain that the entanglement number vanishes only on the separable states. More generally we show that OPSE exist for the convex roof extension of any function that is norm continuous on the pure states of a finite dimensional Hilbert space. Further we prove that the entanglement number is an LOCC monotone, (and thus an entanglement measure), by using a criterion that was developed by Vidal in 2000. We present a simplified proof of Vidal's result where moreover we use an interesting point of view of tree representations for LOCC communications. Lastly, we generalize Gudder's entanglement number by producing a monotonic family of entanglement measures which converge in a natural way to the entropy of entanglement.Quanta 2020; 9: 22–36.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Sayed Abdel-Khalek ◽  
Kamal Berrada ◽  
Eied M. Khalil ◽  
Fadhel Almalki

In the present paper, we examine the quantum entanglement for more general states of two-qubit system in the context of spin coherent states (SCSs). We consider the concurrence as a quantifier of entanglement and express it in terms of SCSs. We determine new set of maximally entangled conditions that provide the maximal amount of entanglement for certain values of the amplitudes of SCSs for the case of pure states. Finally, we examine the entanglement of a class of mixed states of the two qubits and provide the range in which the entanglement value is maximal with respect to the values of the amplitudes of SCSs.


1985 ◽  
Vol 111 (8-9) ◽  
pp. 409-411 ◽  
Author(s):  
Mark Hillery
Keyword(s):  

2010 ◽  
Vol 81 (4) ◽  
Author(s):  
P. P. Munhoz ◽  
J. A. Roversi ◽  
A. Vidiella-Barranco ◽  
F. L. Semião

2010 ◽  
Vol 283 (19) ◽  
pp. 3825-3829 ◽  
Author(s):  
F. Lastra ◽  
G. Romero ◽  
C.E. López ◽  
N. Zagury ◽  
J.C. Retamal

Sign in / Sign up

Export Citation Format

Share Document