Nonrelativistic treatment of hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative quantum mechanics

2020 ◽  
Vol 17 (05) ◽  
pp. 2050067
Author(s):  
Abdelmadjid Maireche

We have obtained the approximate analytical solutions of the nonrelativistic Hydrogen-like atoms such as [Formula: see text] and [Formula: see text] and neutral atoms such as ([Formula: see text] and [Formula: see text]) atoms with a newly proposed generalized perturbed Yukawa potential with centrifugal barrier (GPYPCB) model using the generalized Bopp’s shift method and standard perturbation theory in the symmetries of noncommutative three-dimensional real space phase (NC: 3D-RSP). By approximating the centrifugal term through the Greene–Aldrich approximation scheme, we have obtained the energy eigenvalues and generalized Hamiltonian operator for all orbital quantum numbers [Formula: see text] in the symmetries of NC: 3D-RSP. The potential is a superposition of the perturbed Yukawa potential and new terms proportional with [Formula: see text]) appear as a result of the effects of noncommutativity properties of space and phase on the perturbed Yukawa potential model. The obtained energy eigenvalues appear as functions of the generalized Gamma function, the discreet atomic quantum numbers [Formula: see text], two infinitesimal parameters [Formula: see text], which are induced by (position–position and phase–phase). In addition, the dimensional parameters [Formula: see text] of perturbed Yukawa potential with centrifugal barrier model in NC: 3D-RSP. Furthermore, we have shown that the corresponding Hamiltonian operator in (NC: 3D-RSP) symmetries is the sum of the Hamiltonian operator of perturbed Yukawa potential model and the two operators are modified spin–orbit interaction and the modified Zeeman operator for the previous Hydrogenic and neutral atoms.

2020 ◽  
Vol 65 (11) ◽  
pp. 987
Author(s):  
A. Maireche

Within the framework of nonrelativistic noncommutative quantum mechanics using the improved approximation scheme to the centrifugal term for any l-states via the generalized Bopp’s shift method and standard perturbation theory, we have obtained the energy eigenvalues of a newly proposed generalized Hellmann potential model (the GHP model) for the hydrogenic atoms and neutral atoms. The potential is a superposition of the attractive Coulomb potential plus Yukawa one, and new central terms appear as a result of the effects of noncommutativity properties of space and phase in the Hellmann potential model. The obtained energy eigen-values appear as a function of the generalized gamma function, the discrete atomic quantum numbers (j, n, l, s and m), infinitesimal parameters (a, b, б) which are induced by the position-position and phase-phase noncommutativity, and, the dimensional parameters (Θ, 0) of the GHP model, in the nonrelativistic noncommutative three-dimensional real space phase (NC: 3D-RSP). Furthermore, we have shown that the corresponding Hamiltonian operator with (NC: 3D-RSP) symmetries is the sum of the Hamiltonian operator of the Hellmann potential model and two operators, the first one is the modified spin-orbit interaction, while the second is the modified Zeeman operator for the hydrogenic and neutral atoms.


2013 ◽  
Vol 68 (6-7) ◽  
pp. 454-460 ◽  
Author(s):  
Ali Akbar Rajabi ◽  
Majid Hamzavi

By using the generalized parametric Nikiforov-Uvarov (NU) method, we have obtained the approximate analytical solutions of the radial Schrödinger equation for a perturbed Yukawa potential. The energy eigenvalues and corresponding eigenfunctions are calculated in closed forms. Some numerical results are presented and compared with the standard Yukawa potential. Further, we found the energy levels of the familiar Mie-type potential when the screening parameter of the perturbed Yukawa potential goes to zero, and finally, standard Yukawa and Coulomb potentials are discussed.


2006 ◽  
Vol 21 (31) ◽  
pp. 6465-6476 ◽  
Author(s):  
SAMEER M. IKHDAIR ◽  
RAMAZAN SEVER

Energy levels of neutral atoms have been reexamined by applying an alternative perturbative scheme in solving the Schrödinger equation for the Yukawa potential model with a modified screening parameter. The predicted shell binding energies are found to be quite accurate over the entire range of the atomic number Z up to 84 and compare very well with those obtained within the framework of hypervirial-Padé scheme and the method of shifted large-N expansion. It is observed that the new perturbative method may also be applied to the other areas of atomic physics.


2012 ◽  
Vol 21 (12) ◽  
pp. 1250097 ◽  
Author(s):  
M. HAMZAVI ◽  
S. M. IKHDAIR ◽  
K.-E. THYLWE

Approximate analytical solutions of the Dirac equation with the trigonometric Pöschl–Teller (tPT) potential are obtained for arbitrary spin-orbit quantum number κ using an approximation scheme to deal with the spin-orbit coupling terms κ(κ±1)r-2. In the presence of exact spin and pseudo-spin (p-spin) symmetric limitation, the bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle moving in the field of attractive and repulsive tPT potential are obtained using the parametric generalization of the Nikiforov–Uvarov (NU) method. The case of nonrelativistic limit is studied too.


Author(s):  
Abdelmadjid Maireche

In this paper, within the framework of relativistic quantum mechanics and using the improved approximation scheme to the centrifugal term for any [Formula: see text]states via Bopp’s shift method and standard perturbation theory, we have obtained the modified energy eigenvalues of a newly proposed modified unequal vector and scalar Hellmann plus modified Kratzer potentials (DUVSHMK-Ps) for some diatomic N2, I2, CO, NO, O2 and HCl molecules. This study includes corrections of the first-order in noncommutativity parameters [Formula: see text]. This potential is a superposition of the attractive Coulomb Yukawa potential plus the Kratzer potential and new central terms appear as a result of the effects of noncommutativity properties of space–space. The obtained energy eigenvalues appear as a function of noncommutativity parameters, the strength parameters [Formula: see text] and [Formula: see text] of the (scalar vector) Hellmann potential, the screening range parameter [Formula: see text], the dissociation energy of the vector, and scalar potential [Formula: see text], the equilibrium inter-nuclear distance [Formula: see text] in addition to the atomic quantum numbers [Formula: see text]. Furthermore, we obtained the corresponding modified energy of DUVSHMK-Ps in the symmetries of non-relativistic noncommutative quantum mechanics (NRNCQM). In both relativistic and non-relativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of RQM and NRQM.


Open Physics ◽  
2011 ◽  
Vol 9 (6) ◽  
Author(s):  
Jerzy Stanek

AbstractApplying an improved approximation scheme to the centrifugal term, the approximate analytical solutions of the Schrödinger equation for the Eckart potential are presented. Bound state energy eigenvalues and the corresponding eigenfunctions are obtained in closed forms for the arbitrary radial and angular momentum quantum numbers, and different values of the screening parameter. The results are compared with those obtained by the other approximate and numerical methods. It is shown that the present method is systematic, more efficient and accurate.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
E. S. William ◽  
J. A. Obu ◽  
I. O. Akpan ◽  
E. A. Thompson ◽  
E. P. Inyang

The analytical solutions of the radial D-dimensional Schrödinger equation for the Yukawa potential plus spin-orbit and Coulomb interaction terms are presented within the framework of the Nikiforov-Uvarov method by using the Greene-Aldrich approximation scheme to the centrifugal barrier. The energy eigenvalues obtained are employed to calculate the single-energy spectrum of ⁵⁶Ni and ¹¹⁶Sn for distinct quantum states. We have also obtained corresponding normalized wave functions for the magic nuclei manifested in terms of Jacobi polynomials. However, the energy spectrum without Spin-orbit and Coulomb interaction terms precisely matches the quantum mechanical system of the Yukawa potential field at any arbitrary state.


Science ◽  
2020 ◽  
Vol 367 (6474) ◽  
pp. 186-189 ◽  
Author(s):  
Jayadev Vijayan ◽  
Pimonpan Sompet ◽  
Guillaume Salomon ◽  
Joannis Koepsell ◽  
Sarah Hirthe ◽  
...  

Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.


1995 ◽  
Vol 73 (3-4) ◽  
pp. 131-137 ◽  
Author(s):  
M. Razavy

The motion of the center of a wave packet localized in one of the wells of an asymmetric double-well potential is studied. The asymmetric potential is obtained from a solvable symmetric potential using the Gel'fand–Levitan formalism, by keeping the energy eigenvalues unchanged, but changing the normalization of the ground-state wave function. While in a symmetric double well the wave packet tunnels back and forth between the two wells, for an asymmetric well, in general, tunneling does not take place. This is independent of the initial location of the wave packet, i.e., whether it is centered at the minimum of the shallower or of the deeper well. However, when such a system is coupled to a dissipative force, then the tunneling becomes possible. For instance it is shown that if, as a model of dissipative coupling, one chooses Gisin's nonlinear evolution equation, then the center of the wave packet ends up in the deeper well (decay of false vacuum). This result depends on the particular model of dissipation, for instance, an optical potential model yields a different result.


Sign in / Sign up

Export Citation Format

Share Document