scholarly journals Convergence Conditions of Mixed States and their von Neumann Entropy in Continuous Quantum Measurements

2014 ◽  
Vol 21 (04) ◽  
pp. 1450010
Author(s):  
Toru Fuda

By carrying out appropriate continuous quantum measurements with a family of projection operators, a unitary channel can be approximated in an arbitrary precision in the trace norm sense. In particular, the quantum Zeno effect is described as an application. In the case of an infinite dimension, although the von Neumann entropy is not necessarily continuous, the difference of the entropies between the states, as mentioned above, can be made arbitrarily small under some conditions.

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ali Mollabashi ◽  
Kotaro Tamaoka

Abstract We study odd entanglement entropy (odd entropy in short), a candidate of measure for mixed states holographically dual to the entanglement wedge cross section, in two-dimensional free scalar field theories. Our study is restricted to Gaussian states of scale-invariant theories as well as their finite temperature generalizations, for which we show that odd entropy is a well-defined measure for mixed states. Motivated from holographic results, the difference between odd and von Neumann entropy is also studied. In particular, we show that large amounts of quantum correlations ensure the odd entropy to be larger than von Neumann entropy, which is qualitatively consistent with the holographic CFT. In general cases, we also find that this difference is not even a monotonic function with respect to size of (and distance between) subsystems.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1527
Author(s):  
Luis Pedro García-Pintos ◽  
Adolfo del Campo

We formulate limits to perception under continuous quantum measurements by comparing the quantum states assigned by agents that have partial access to measurement outcomes. To this end, we provide bounds on the trace distance and the relative entropy between the assigned state and the actual state of the system. These bounds are expressed solely in terms of the purity and von Neumann entropy of the state assigned by the agent, and are shown to characterize how an agent’s perception of the system is altered by access to additional information. We apply our results to Gaussian states and to the dynamics of a system embedded in an environment illustrated on a quantum Ising chain.


2009 ◽  
Vol 07 (05) ◽  
pp. 959-968
Author(s):  
Z. Z. GUO ◽  
Z. G. XUAN ◽  
Y. S. ZHANG ◽  
XIAOWEI WU

The ground state entanglement in one- and two-dimensional Anderson models are studied with consideration of the long-range correlation effects and using the measures of concurrence and von Neumann entropy. We compare the effects of the long-range power-law correlation for the on-site energies on entanglement with the uncorrelated cases. We demonstrate the existence of the band structure of the entanglement. The intraband and interband jumping phenomena of the entanglement are also reported and explained to as the localization-delocalization transition of the system. We also demonstrated the difference between the results of one- and two-dimensions. Our results show that the correlation of the on-site energies increases the entanglement.


2012 ◽  
Vol 10 (02) ◽  
pp. 1230001 ◽  
Author(s):  
T. PRUDÊNCIO

We discuss the relation between the no-cloning theorem from quantum information and the doubling procedure used in the formalism of thermofield dynamics (TFD). We also discuss how to apply the no-cloning theorem in the context of thermofield states defined in TFD. Consequences associated to mixed states, von Neumann entropy and thermofield vacuum are also addressed.


2020 ◽  
pp. 63-73
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Chapter 4 introduces a great QM mystery: the notion of quantum measurements. Henry is in a superposition of versions localized in several places, but when Eve measures Henry’s position she (as a classical observer) either sees Henry or she does not. Physical reality is made of such measurements. Eve’s measurement projects or collapses Henry’s superposition state to a single location. The meaning of quantum-state or wavefunction “collapse” and the role of the observer have been at the heart of the historical debate concerning the interpretation of QM. Whereas Von Neumann and Wigner stressed the inseparability of the observed (measured) world from the human mind, alternative “observer-free” views were suggested, such as Everett’s many-world interpretation or Zurek’s quantum Darwinism that replaces the observer by the environment. In the appendix to this chapter the notion of probability amplitudes is elucidated, new notations for operators are introduced and projection operators are presented.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 49 ◽  
Author(s):  
Jorge Anaya-Contreras ◽  
Héctor Moya-Cessa ◽  
Arturo Zúñiga-Segundo

The Araki–Lieb inequality is commonly used to calculate the entropy of subsystems when they are initially in pure states, as this forces the entropy of the two subsystems to be equal after the complete system evolves. Then, it is easy to calculate the entropy of a large subsystem by finding the entropy of the small one. To the best of our knowledge, there does not exist a way of calculating the entropy when one of the subsystems is initially in a mixed state. For the case of a two-level atom interacting with a quantized field, we show that it is possible to use the Araki–Lieb inequality and find the von Neumann entropy for the large (infinite) system. We show this in the two-level atom-field interaction.


Author(s):  
Igor Devetak ◽  
Andreas Winter

We study and solve the problem of distilling a secret key from quantum states representing correlation between two parties (Alice and Bob) and an eavesdropper (Eve) via one–way public discussion: we prove a coding theorem to achieve the ‘wire–tapper’ bound, the difference of the mutual information Alice–Bob and that of Alice–Eve, for so–called classical–quantum–quantum–correlations, via one–way public communication. This result yields information–theoretic formulae for the distillable secret key, giving ‘ultimate’ key rate bounds if Eve is assumed to possess a purification of Alice and Bob's joint state. Specializing our protocol somewhat and making it coherent leads us to a protocol of entanglement distillation via one–way LOCC (local operations and classical communication) which is asymptotically optimal: in fact we prove the so–called ‘hashing inequality’, which says that the coherent information (i.e. the negative conditional von Neumann entropy) is an achievable Einstein–Podolsky–Rosen rate. This result is known to imply a whole set of distillation and capacity formulae, which we briefly review.


2015 ◽  
Vol 29 (07) ◽  
pp. 1550039 ◽  
Author(s):  
Danko Georgiev

Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


Sign in / Sign up

Export Citation Format

Share Document