Nonlinear Static and Dynamic Buckling Analysis of Imperfect Stiffened Double-Layer FGP Shallow Spherical Shells Embedded within Elastic Foundations

Author(s):  
Kamran Foroutan ◽  
Habib Ahmadi
1973 ◽  
Vol 40 (2) ◽  
pp. 411-416 ◽  
Author(s):  
R. E. Ball ◽  
J. A. Burt

The dynamic behavior of clamped shallow spherical shells subjected to axisymmetric and nearly axisymmetric step-pressure loads is examined using a digital computer program for the geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution. A criterion for dynamic buckling under the nearly axisymmetric load is proposed and critical buckling pressures are determined for a large range of shell sizes.


Author(s):  
X. W. Zhang ◽  
T. X. Yu

AbstractBy means of ping-pong balls, the dynamic buckling behaviours of thin-walled spherical shells under impact loading are studied both experimentally and numerically. First, the quasi-static tests were conducted on an MTS tester, in which the ball was compressed onto a PMMA plate. Apart from the force-displacement relationship, the evolution of the contact zone between the ball and the plate was obtained by a digital camera. In the impact tests, ping-pong balls were accelerated by an air-gun and then impinged onto a rigid plate with the velocity ranging 10–45 m


2009 ◽  
Vol 31 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Dao Huy Bich

In the present paper the non-linear buckling analysis of functionally graded spherical shells subjected to external pressure is investigated. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. In the formulation of governing equations geometric non-linearity in all strain-displacement relations of the shell is considered. Using Bubnov-Galerkin's method to solve the problem an approximated analytical expression of non-linear buckling loads of functionally graded spherical shells is obtained, that allows easily to investigate stability behaviors of the shell.


2017 ◽  
Vol 39 (4) ◽  
pp. 351-364
Author(s):  
Nguyen Minh Khoa ◽  
Hoang Van Tung

This paper presents an analytical approach to investigate the nonlinear axisymmetric response of moderately thick FGM sandwich shallow spherical shells resting on elastic foundations, exposed to thermal environments and subjected to uniform external pressure. Material properties are assumed to be temperature independent, and effective properties of FGM layer are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Formulations are based on first-order shear deformation shell theory taking geometrical nonlinearity, initial geometrical imperfection, Pasternak type elastic foundations and various degree of tangential constraint of boundary edge into consideration. Approximate solutions are assumed to satisfy clamped boundary condition and Galerkin method is applied to derive closed-form expressions of critical buckling loads and nonlinear load-deflection relation. Effects of geometrical parameters, thickness of face sheets, foundation stiffness, imperfection, thermal environments and degree of tangential edge constraints on the nonlinear stability of FGM sandwich shallow spherical shells are analyzed and discussed. 


Sign in / Sign up

Export Citation Format

Share Document