Effects of Thermal Tension Transients on the Muscle Crossbridge

2016 ◽  
Vol 11 (03) ◽  
pp. 117-126 ◽  
Author(s):  
Peter R. Greene

The transverse thermal fluctuations of the myosin molecule are significant. This paper explores the contribution of lateral myosin bending to the developed crossbridge force and power stroke. The equipartition theorem is used to calculate the mode amplitudes for myosin bending. Crossbridge axial force [Formula: see text] and power stroke [Formula: see text] are developed by transverse in-plane fluctuations along the [Formula: see text]- and [Formula: see text]-axes. Practical applications include the effects of temperature on the flexibility of the myosin molecule stiffness and tension, relevant to man-made fabrication of synthetic muscle using micromachines and nanowires. Scaling laws for the [Formula: see text] bending amplitude depend on filament length, mode number, and stiffness, as [Formula: see text], and (EI)[Formula: see text]. This paper quantifies the effects of thermal motion on the mechanics of miniature molecular motors, including the muscle crossbridge.

2016 ◽  
Vol 7 ◽  
pp. 328-350 ◽  
Author(s):  
Igor Goychuk

The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation–dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.


2018 ◽  
Vol 30 (5) ◽  
pp. 853-868
Author(s):  
CHRISTIAN KUEHN ◽  
FRANCESCO ROMANO

Critical transitions (or tipping points) are drastic sudden changes observed in many dynamical systems. Large classes of critical transitions are associated with systems, which drift slowly towards a bifurcation point. In the context of stochastic ordinary differential equations, there are results on growth of variance and autocorrelation before a transition, which can be used as possible warning signs in applications. A similar theory has recently been developed in the simplest setting for stochastic partial differential equations (SPDEs) for self-adjoint operators in the drift term. This setting leads to real discrete spectrum and growth of the covariance operator via a certain scaling law. In this paper, we develop this theory substantially further. We cover the cases of complex eigenvalues, degenerate eigenvalues as well as continuous spectrum. This provides a fairly comprehensive theory for most practical applications of warning signs for SPDE bifurcations.


1964 ◽  
Vol 6 (3) ◽  
pp. 258-263 ◽  
Author(s):  
L. A. Newbery

An exact solution is presented for the forced flow of a viscous liquid through a concentric annulus in which the fluid temperature is increased and the viscosity decreased by rotation of the inner boundary. Such a solution has not previously appeared in the published literature. Some practical applications are mentioned.


2016 ◽  
Vol 291 (49) ◽  
pp. 25351-25363 ◽  
Author(s):  
Hendrik Sielaff ◽  
James Martin ◽  
Dhirendra Singh ◽  
Goran Biuković ◽  
Gerhard Grüber ◽  
...  

2013 ◽  
Vol 10 (3) ◽  
pp. 036004 ◽  
Author(s):  
Hui-Shun Kuan ◽  
M D Betterton

2015 ◽  
Vol 112 (26) ◽  
pp. E3337-E3344 ◽  
Author(s):  
Michael J. Greenberg ◽  
Tianming Lin ◽  
Henry Shuman ◽  
E. Michael Ostap

Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes. Myo1b has the properties of a tension-sensing anchor, slowing its actin-detachment kinetics by two orders of magnitude with just 1 pN of resisting force, whereas Myo1c has the properties of a slow transporter, generating power without slowing under 1-pN loads that would stall Myo1b. To examine the structural elements that lead to differences in force sensing, we used single-molecule and ensemble kinetic techniques to show that the myosin-I N-terminal region (NTR) plays a critical role in tuning myosin-I mechanochemistry. We found that replacing the Myo1c NTR with the Myo1b NTR changes the identity of the primary force-sensitive transition of Myo1c, resulting in sensitivity to forces of <2 pN. Additionally, we found that the NTR plays an important role in stabilizing the post–power-stroke conformation. These results identify the NTR as an important structural element in myosin force sensing and suggest a mechanism for generating diversity of function among myosin isoforms.


2013 ◽  
Vol 716 ◽  
pp. 171-188 ◽  
Author(s):  
Quanzi Yuan ◽  
Ya-Pu Zhao

AbstractDynamic wetting of a droplet on lyophilic pillars was explored using a multiscale combination method of experiments and molecular dynamics simulations. The excess lyophilic area not only provided excess driving force, but also pinned the liquid around the pillars, which kept the moving contact line in a dynamic balance state every period of the pillars. The flow pattern and the flow field of the droplet on the pillar-arrayed surface, influenced by the concerted effect of the liquid–solid interactions and the surface roughness, were revealed from the continuum to the atomic level. Then, the scaling analysis was carried out employing molecular kinetic theory. Controlled by the droplet size, the density of roughness and the pillar height, two extreme regimes were distinguished, i.e. $R\sim {t}^{1/ 3} $ for the rough surface and $R\sim {t}^{1/ 7} $ for the smooth surface. The scaling laws were validated by both the experiments and the simulations. Our results may help in understanding the dynamic wetting of a droplet on a pillar-arrayed lyophilic substrate and assisting the future design of pillar-arrayed lyophilic surfaces in practical applications.


2020 ◽  
Author(s):  
U.L. Mallimadugula ◽  
E.A. Galburt

ABSTRACTMolecular motors convert chemical potential energy into mechanical work and perform a great number of critical biological functions. Examples include the polymerization and manipulation of nucleic acids, the generation of cellular motility and contractility, the formation and maintenance of cell shape, and the transport of materials within cells. The mechanisms underlying these molecular machines are routinely divided into two categories: Brownian ratchet and power stroke. While a ratchet uses chemical energy to bias thermally activated motion, a stroke depends on a direct coupling between chemical events and motion. However, the multi-dimensional nature of protein energy landscapes allows for the possibility of multiple reaction paths connecting two states. Here, we investigate the properties of a hypothetical molecular motor able to utilize parallel ratchet and stroke translocation mechanisms. We explore motor velocity and force-dependence as a function of the energy landscape of each path and reveal the potential for such a mechanism to result in an optimum force for motor function. We explore how the presence of this optimum depends on the rates of the individual paths and show that the distribution of stepping times characterized by the randomness parameter may be used to test for parallel path mechanisms. Lastly, we caution that experimental data consisting solely of measurements of velocity as a function of ATP concentration and force cannot be used to eliminate the possibility of such a parallel path mechanism.SIGNIFICANCEMolecular motors perform various mechanical functions in cells allowing them to move, replicate and perform various housekeeping functions required for life. Biophysical studies often aim to determine the molecular mechanism by which these motors convert chemical energy to mechanical work by fitting experimental data with kinetic models that fall into one of two classes: Brownian ratchets or power strokes. However, nothing a priori requires that a motor function via a single mechanism. Here, we consider a theoretical construct where a motor has access to both class of mechanism in parallel. Combining stochastic simulations and analytical solutions we describe unique signatures of such a mechanism that could be observed experimentally. We also show that absence of these signatures does not formally eliminate the existence of such a parallel mechanism. These findings expand our theoretical understanding of the potential motor behaviors with which to interpret experimental results.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012037
Author(s):  
Y Fu ◽  
X Wang ◽  
B Zheng ◽  
P Zhang ◽  
Q H Fan ◽  
...  

Abstract The theoretical background and historical development of the similarity theory during the past decades are reviewed. We demonstrate similar discharges in local and nonlocal kinetic regimes, taking the low-pressure capacitive radio frequency (rf) discharges and microdischarges as examples. By using fully kinetic particle-in-cell simulations, we verify the similarity law (SL) and show a violation of frequency scaling (f-scaling) in the low-pressure capacitive rf plasmas. The similarity relations for electron density and electron power absorption are confirmed in similar rf discharges. With only the driving frequency varied, the f-scaling for electron density is also validated, showing almost the same trend as the similarity scaling, across most of the frequency regime. However, violations of the f-scaling are observed at lower frequencies, which are found to be relevant to the electron heating mode transition from stochastic to Ohmic heating. The scaling characteristics have also been comprehensively studied for microdischarges with dimensions from hundreds to several microns, with transition from secondary electron dominated regime to field emission regime. Finally, practical applications of the similarity and scaling laws are summarized.


Sign in / Sign up

Export Citation Format

Share Document