A Size-Dependent Multiple-Loop Negative Feedback System Describes Biological Segment Formation Based on the Clock and Wavefront Mechanism

2018 ◽  
Vol 13 (04) ◽  
pp. 217-228
Author(s):  
Yusuke Shibasaki ◽  
Chikako Yoshida-Noro ◽  
Minoru Saito

We proposed a new mathematical model for biological segment formation based on the clock and wavefront mechanism suggested in 1970s. Here, we chose an invertebrate, Enchytraeus japonensis, as a model animal and adopted multiple-loop negative feedback system based on its physiological features. We numerically showed the segment number of the model animal is autopoietically controlled by a size-dependent function. Additionally, we discussed two cases of the irregular oscillations by applying the biological conditions for abnormal development. The present model showed robustness under local noise perturbations like many other biological oscillators and qualitatively described unique development of the model animal. As a result, we suggested that a global interaction of chemical signals in the body can also drive “segmentation clock”.

2014 ◽  
Vol 590 ◽  
pp. 451-457
Author(s):  
Sen Nan Song ◽  
Fa Chao Jiang ◽  
Hong Shi

The present work is concerned with the rolling motion of the battery pack when EV travelling on the road. First McPherson suspension system was regarded as the research object with detailed analysis of its structural features and motion characteristics. Establish the mathematical model which could apply to calculating the rolling motion of the vehicle body. Through MATLAB/Simulink simulation software, we could calculate the rolling angle on passive suspension. On this basis, assume that the battery pack mounted on the vehicle body and make it passive connection and PID connection. When the body rolls, the battery pack will produce a certain angle then. Next establish the mathematical model to summarize the relationship between the two variables. Then we set the parameters and calculate the roll angle of battery pack in both cases for comparison. Simulation results show that road irregularities will make battery rotate an angle and PID controller can effectively reduce the angle, especially angular acceleration. This paper put forward a new idea that battery is connected with body by active control on EV, and proves the superiority in reducing the rolling angle.


2021 ◽  
Vol 118 (48) ◽  
pp. e2109210118
Author(s):  
Régis Chirat ◽  
Alain Goriely ◽  
Derek E. Moulton

Snails are model organisms for studying the genetic, molecular, and developmental bases of left–right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


2021 ◽  
Vol 14 (3) ◽  
pp. 90-96
Author(s):  
Anastasia Goncharova ◽  
Maria Vil'

The paper presents the implementation of the mathematical model of cancer taking into account interference competition and the model of continuous treatment with a constant concentration of the drug in the patient's blood. The implementation was carried out using the MATLAB SimBiology application package. The principle of implementation of different stages of the course of the disease within the framework of one model is described. On the basis of the constructed models and SimBiology tools, a modification was carried out that implements the discrete administration of doses of the drug in courses and takes into account its dynamics in the body, taking into account the assumption that the drug is consumed only to suppress cancerous cells.


1998 ◽  
Vol 28 (3) ◽  
pp. 655-663 ◽  
Author(s):  
P. NOPOULOS ◽  
M. FLAUM ◽  
S. ARNDT ◽  
N. ANDREASEN

Background. Morphometry, the measurement of forms, is an ancient practice. In particular, schizophrenic somatology was popular early in this century, but has been essentially absent from the literature for over 30 years. More recently, evidence has grown to support the notion that aberrant neurodevelopment may play a role in the pathophysiology of schizophrenia. Is the body, like the brain, affected by abnormal development in these patients?Methods. To evaluate global deficit in development and its relationship to pre-morbid function, height was compared in a large group (N=226) of male schizophrenics and a group of healthy male controls (N=142) equivalent in parental socio-economic status. Patients in the lower quartile of height were compared to those in the upper quartile of height.Results. The patient group had a mean height of 177·1 cm, which was significantly shorter than the mean height of the control group of 179·4 (P<0·003). Those in the lower quartile had significantly poorer pre-morbid function as measured by: (1) psychosocial adjustment using the pre-morbid adjustment scales for childhood and adolescence/young adulthood, and (2) cognitive function using measures of school performance such as grades and need for special education. In addition, these measures of pre-morbid function correlated significantly with height when analysed using the entire sample.Conclusions. These findings provide further support to the idea that abnormal development may play a key role in the pathophysiology of schizophrenia. Furthermore, this is manifested as a global deficit in growth and function resulting in smaller stature, poorer social skills, and deficits in cognitive abilities.


Author(s):  
Oktay Baysal ◽  
Terry L. Meek

Since the goal of racing is to win and since drag is a force that the vehicle must overcome, a thorough understanding of the drag generating airflow around and through a race car is greatly desired. The external airflow contributes to most of the drag that a car experiences and most of the downforce the vehicle produces. Therefore, an estimate of the vehicle’s performance may be evaluated using a computational fluid dynamics model. First, a computer model of the race car was created from the measurements of the car obtained by using a laser triangulation system. After a computer-aided drafting model of the actual car was developed, the model was simplified by removing the tires, roof strakes, and modification of the spoiler. A mesh refinement study was performed by exploring five cases with different mesh densities. By monitoring the convergence of the computed drag coefficient, the case with 2 million elements was selected as being the baseline case. Results included flow visualization of the pressure and velocity fields and the wake in the form of streamlines and vector plots. Quantitative results included lift and drag, and the body surface pressure distribution to determine the centerline pressure coefficient. When compared with the experimental results, the computed drag forces were comparable but expectedly lower than the experimental data mainly attributable to the differences between the present model and the actual car.


Author(s):  
Volodymyr Topilnytskyy ◽  
Yaroslav Kusyi ◽  
Dariya Rebot

The article describes the methodology for the study of the dynamics of vibrating machines for surface processing of products by mathematical modeling, which is presented in four main stages. The first stage: analysis of classes of vibrating machines for surface treatment of products, choice of basic for solving the technological problem, project of a unified calculation scheme of the machine. The second stage: development of a nonlinear mathematical model for describing the dynamics of the vibration machine working body and its filling, development of elements of automated calculations of the machine. The third stage: the study of the influence of the parameters of the vibrating machine, product sets and tools (with their various combinations) on the factors of the intensity of products surface processing. The fourth stage: recommendations for choosing vibrating machine parameters and machining bodies that will maximize the processing performance of products with the selected intensity criterion. A mathematical model for describing the motion of a vibrating machine for surface treatment of articles by a set of unrelated bodies of small size is created. It has two unbalance units that generate oscillations of its working body and a spring suspension-mounting of the working chamber (container). The model is parametric and nonlinear, incorporating key dynamic, kinematic and geometric parameters of the vibrating machine in symbolic format. It is constructed by: descriptions of the plane-parallel movement of the mechanical system, the rotational motion of the material point and the body; second-order Lagrange equation; asymptotic (approximate) methods of nonlinear mechanics. With the help of the model it is possible: to describe the oscillatory movement of the working chamber (container) of the vibrating machine; to study the influence of the machine parameters on the efficiency of performance of the set technological task, the conditions of occurrence of non-stationary modes of operation of the vibrating machine and the ways of their regulation.


2021 ◽  
Vol 29 (2) ◽  
pp. 97-109
Author(s):  
S.M. Tarasov ◽  

The paper analyzes how random and systematic components of instrumental error of an automated astronomical system affect the accuracy of the landmark astronomical azimuth. The obtained results can be applied to construct the error mathematical model and to define the mutual orientation of the body axes when designing the system.


2021 ◽  
pp. 377-403
Author(s):  
Geoffrey Brooker

“Stability of negative feedback” discusses the measures that must be taken to guarantee that a negative-feedback system is stable. Examples are given of frequency dependences using Bode and Nyquist plots. Safety margins are quantified by means of gain margins and phase margins; the desirability of a minimum-phase-lag network. A design procedure is formulated. There is discussion of Nyquist (conditional) stability, and how it may be achieved by judicious introduction of a non-linearity. A demonstration circuit shows that these measures can yield Nyquist stability with safety.


Sign in / Sign up

Export Citation Format

Share Document