Facile Synthesis of Graphene–Enwrapped Ag3PO4 Composites with Highly Efficient Visible Light Photocatalytic Performance

NANO ◽  
2016 ◽  
Vol 11 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Lei Shi ◽  
Da Chen ◽  
Wenting Xie ◽  
Jing Zhang ◽  
Guangxing Ping ◽  
...  

In this work, thermally exfoliated graphene nanosheets (GNS) were employed to prepare novel Ag3PO4–GNS composite photocatalysts by a facile chemical precipitation approach. The as-prepared Ag3PO4–GNS composite photocatalysts were characterized by X-ray diffraction (XRD) pattern, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric (TG) analysis, ultraviolet-visible diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectra. It was found that the Ag3PO4 particles were well deposited on the surfaces of GNS. Compared with bare Ag3PO4 and Ag3PO4–rGO composite, the Ag3PO4–GNS composite exhibited enhanced photocatalytic activity for the photodegradation of rhodamine B (RhB) under visible light irradiation. The photocatalytic degradation rate of Ag3PO4–GNS composite was 1.7 times that of bare Ag3PO4 and about 1.3 times that of Ag3PO4–rGO for the degradation of RhB. Furthermore, the photocatalytic stability of Ag3PO4–GNS composite was also greatly enhanced. This enhanced photocatalytic activity and stability could be ascribed to the positive synergetic effects between the Ag3PO4 particles and GNS sheets, which could provide a greater number of active adsorption sites, suppress charge recombination and reduce the serious photocorrosion of Ag3PO4. Moreover, the photocatalytic degradation of RhB over Ag3PO4–GNS composites was also optimized, suggesting that the optimal amount of GNS in the composites was 11.4[Formula: see text]wt.%. This work shows a great potential of Ag3PO4–GNS composite for environmental treatment of organic pollutants.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Yan ◽  
Xiaojuan Li ◽  
Bo Jin ◽  
Min Zeng ◽  
Rufang Peng

A series of TiO2, TiO2/Pd, and TiO2/PdO hollow sphere photocatalysts was successfully prepared via a combination of hydrothermal, sol-immobilization, and calcination methods. The structure and optical properties of the as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Telleranalysis, Barrett-Joyner-Halenda measurement, and UV-Vis diffuse reflectance spectroscopy. The photocatalysis efficiencies of all samples were evaluated through the photocatalytic degradation of rhodamine B under visible light irradiation. Results indicated that TiO2/PdO demonstrated a higher photocatalytic activity (the photocatalytic degradation efficiency could reach up to 100% within 40 min) than the other samples and could maintain a stable photocatalytic degradation efficiency for at least four cycles. Finally, after using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species for the effectiveness of the TiO2/PdO photocatalyst.


2020 ◽  
pp. 089270572094421
Author(s):  
Guo Liu ◽  
Ting-Ting Li ◽  
Xiao-Fang Song ◽  
Jin-Yu Yang ◽  
Jiang-Tao Qin ◽  
...  

A new type of N-isopropyl acrylamide/high-substituted hydroxypropyl cellulose/graphite carbon nitride (NIPAAm/HHPC/g-C3N4) smart hydrogel-based photocatalyst with thermally driven characteristic was successfully prepared by electron beam pre-radiation polymerization and radiation cross-linking methods. The agglomeration and loss of g-C3N4 nanosheets can be avoided effectively, and ensured high photocatalytic activity under visible light, once the g-C3N4 nanosheets are uniformly dispersed into the skeleton of a thermosensitive NIPAAm/HHPC hydrogel. NIPAAm/HHPC/g-C3N4 (NHC) hydrogel was characterized by nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. The microstructure of NHC was further characterized by scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller. The adsorption–photocatalytic removal rate of rhodamine B reached 71.4% at the mass ratio of g-C3N4 of 0.8% (NHC-0.8%) hydrogel in an aqueous medium under visible light. The thermal shrinkage ratio can reach 90.6% at 60°C after 5 min and could effectively achieve the function of recycling-free in a portable photocatalytic reaction device under the optimal conditions. Possible mechanism of adsorption–photocatalysis and thermally driven recycling-free on NHC hydrogel was also obtained. These thermally driven recycling-free characteristic and highly photocatalytic properties of the hybrid hydrogel-based photocatalyst show that it can be used as a promising new material with extensive applications in wastewater treatment.


NANO ◽  
2017 ◽  
Vol 12 (06) ◽  
pp. 1750072 ◽  
Author(s):  
Tao Wang ◽  
Changchang Ma ◽  
Dan Wu ◽  
Xinlin Liu ◽  
Yang Liu ◽  
...  

In this paper, a novel heterostructure of 0D/3D-CdSe/Bi[Formula: see text]TiO[Formula: see text] pyramidal photocatalyst was synthesized and characterized. It exhibited significantly photocatalytic efficiency in photocatalytic degradation of the tetracycline than pure Bi[Formula: see text]TiO2 and CdSe and showed high stability. The enhanced photocatalytic activity might be attributed to the formation of heterostructure between CdSe QDs and 3D Bi[Formula: see text]TiO[Formula: see text], in which CdSe QDs served as electron trapper to improve the separation of photodegradation electron–hole pairs, and provided a number of active adsorption sites for the photogenerated of pollutants. The photocatalytic mechanism of 0D/3D-CdSe/Bi[Formula: see text]TiO[Formula: see text] pyramidal heterostructure was also proposed.


2021 ◽  
Author(s):  
Rui Zhang ◽  
ziyin chen ◽  
Chen Zhao ◽  
Kunlin Zeng ◽  
Lu Cai ◽  
...  

Abstract A novel binary BiSI/Ag2CO3 photocatalyst with excellent visible light-driven photocatalytic performance was prepared. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the samples were evaluated by photocatalytic degradation of rhodamine B(RhB) under the irradiation of visible light. The results showed that the BiSI improves the photocatalytic activity of BiSI/Ag2CO3. Moreover, when the mass ratio of BiSI in BiSI/Ag2CO3 composites was 40%, the as-prepared BiSI/Ag2CO3 composite exhibited the best photocatalytic activity for degrading RhB. Finally, the possible mechanism for photodegradation over the BiSI/Ag2CO3 composites is also proposed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi Thuy Trang Phan ◽  
Thanh Tam Truong ◽  
Ha Tran Huu ◽  
Le Tuan Nguyen ◽  
Van Thang Nguyen ◽  
...  

The n%Mn-MoS2/rGO (labeled as n%MMS/rGO, where n% = Mn/(Mn + Mo) in mol) composites were successfully prepared by a facile hydrothermal method from the Mn-MoS2 (MMS) and rGO precursors, in which the MMS was obtained by a facile one-step calcination of (NH4)6Mo7O24·4H2O, (NH2)2CS, and Mn(CH3COO)2·4H2O as precursors in N2 gas at 650°C. The samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron paramagnetic resonance spectroscopy (EPR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS), which indicates the composites containing nanosheets of Mn-MoS2 and rGO components. The photocatalytic activities of the n%MMS/rGO composite photocatalysts were evaluated through the photodegradation of rhodamine B (RhB) under the visible light irradiation. The enhancement in the photocatalytic performance of the achieved composites was attributed to the synergic effect of Mn doping and rGO matrix. The investigation of photocatalytic mechanism was also conducted.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Nguyen Thi Lan ◽  
Vo Hoang Anh ◽  
Hoang Duc An ◽  
Nguyen Phi Hung ◽  
Dao Ngoc Nhiem ◽  
...  

In this study, C-N-S-tridoped TiO2 composite was fabricated from TiO2 prepared from ilmenite ore and thiourea by means of hydrothermal method. The obtained material was characterized by X-ray diffraction, Raman scattering spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that C-N-S-tridoped TiO2 material has a large specific surface area, showing good photocatalytic activity on the degradation of antibiotic tetracycline in visible light region. The study on the mechanism of tetracycline photodegradation using the liquid chromatography with mass spectrometry was performed. It was found that tetracycline has been degraded over C-N-S-tridoped TiO2 catalyst into many different intermediates which can eventually be converted into CO2 and H2O. The kinetics of photocatalytic decomposition of tetracycline were investigated. In addition, the obtained material could catalyze well the degradation of other antibiotics (ciprofloxacin and chloramphenicol) and dyes (rhodamine-B, methylene blue, and organe red). The catalyst was stable after five recycles with slight loss of catalytic activity, which indicates great potential for practical application of C-N-S-tridoped TiO2 catalyst in treatment of wastewater containing tetracycline in particular or antibiotics in general.


NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850127 ◽  
Author(s):  
Chentao Zou ◽  
Zhiyuan Yang ◽  
Mengjun Liang ◽  
Yunpeng He ◽  
Yun Yang ◽  
...  

Bi metal deposited on Bi2MoO6 composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using NaBH4 as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of Bi/Bi2MoO6 composite to RhB is 10.8 times that of Bi2MoO6, and the degradation rate constant of BPA is 6.9 times of that of Bi2MoO6. Nitrogen absorption–desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of Bi/Bi2MoO6 composites. The higher charge transfer efficiency of Bi/Bi2MoO6 is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jianhui Huang ◽  
Wahkit Cheuk ◽  
Yifan Wu ◽  
Frank S. C. Lee ◽  
Wingkei Ho

Bismuth-doped TiO2submicrospheres were synthesized by ultrasonic spray pyrolysis. The prepared bismuth-doped titania was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). Aqueous photocatalytic activity was evaluated by the decomposition of methyl orange under visible-light irradiation. The results indicate that doping of bismuth remarkably affects the phase composition, crystal structure, and the photocatalytic activity. The sample with 2% Bi exhibits the optimum photocatalytic activity.


NANO ◽  
2016 ◽  
Vol 11 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Jing Xu ◽  
Guogang Tang ◽  
Wei Liang ◽  
Dongyi Zhou ◽  
Changsheng Li ◽  
...  

BiOCl/BiOBr composite microspheres were synthesized through a one-pot mixed surfactant-assisted solvothermal process. The morphology, crystal structure, surface area and photocatalytic activity of the as-prepared BiOCl/BiOBr composite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy. The photocatalytic ability of the as-prepared photocatalysts was evaluated using rhodamine B (RhB) as a target pollutant. The BiOCl/BiOBr composite exhibited much higher photocurrent intensity than pure BiOBr, BiOCl and other different components, which perfectly coincided with the enhanced photocatalytic activity for the degradation of RhB under visible light ([Formula: see text][Formula: see text]nm). Moreover, this novel and facile strategy to fabricate bismuth halide-based composite with high efficiency were widely used in other bismuth-based composite photocatalyst for removing organic contaminants in wastewater.


Sign in / Sign up

Export Citation Format

Share Document