Tribology Property of Benzoxazine–Bismaleimide Composites with Hyperbranched Polysilane-Grafted Multi-Walled Carbon Nanotubes

NANO ◽  
2016 ◽  
Vol 11 (06) ◽  
pp. 1650061
Author(s):  
Yuan Jia ◽  
Hong-Xia Yan ◽  
Song Li ◽  
Tianye Liu

To reveal the wear mechanism of hyperbranched polysilane (HBPSi) grafted multi-walled carbon nanotubes (HBPSi–MWCNTs) modified benzoxazine–bismaleimide (BOZ–BMI) resin (HBPSi–MWCNTs/BOZ–BMI), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) were employed. The results indicated that the suitable addition of HBPSi–MWCNTs could largely enhance the tribological properties of BOZ–BMI composites. The worn surface of the composites showed that the severe wear of the BOZ–BMI resin was converted from adhesive wear to abrasive wear with the addition of HBPSi–MWCNTs. The excellent tribological properties can be attributed to the improved interfacial adhesion between HBPSi–MWCNTs and the BOZ–BMI resin matrix. The TGA demonstrated that the composite with 0.8[Formula: see text]wt.% HBPSi–MWCNTs exhibits better thermal resistance; thus, it can inhibit adhesive wear during the friction process. The XPS spectra and the surface energy showed that the HBPSi–MWCNTs could be exposed on the worn surface of the composite to improve the anti-wear capacity of the composites further.

2009 ◽  
Vol 79-82 ◽  
pp. 553-556 ◽  
Author(s):  
Ling Fei Shi ◽  
Gang Li ◽  
Gang Sui ◽  
Xiao Ping Yang

The increasing proliferation and application of advanced polymer composites requires higher and broader performance resin matrices. Poly(oxypropylene) with –NH2 end-groups has been widely used to toughen epoxy resins, but the strength of resin matrix may be reduced due to the addition of flexible segments in the crosslinking network. Carbon nanotubes (CNTs) have been paid more and more attention in recent years because of their superior thermal and mechanical properties. In this paper, CNTs grafted with Jeffamines T403 were used to simultaneously improve the reinforcement and toughening of an epoxy resin. The untreated multi-walled carbon nanotubes (u-MWNTs) were functionalized with amine groups according to three steps: carboxylation, acylation, and amidation. The f-MWNTs were characterized by Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the T403 was grafted to the surface of MWCNTs. The mechanical and thermal properties of epoxy with f-MWNTs were investigated. The tensile and flexural strength increased by 7.77 % and 7.03 % after adding 0.5wt% f-MWCNTs without sacrificing the impact toughness. At the same time, dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature (Tg) of epoxy with f-MWNTs were increased. The fracture surface of epoxy with f-MWNTs was observed by scanning electron microscopy (SEM) to understand the dispersion of f-MWNTs in epoxy matrix and interfacial adhesion between f-MWNTs and epoxy matrix, which can be attributed to the strong interfacial bonding between f-MWNTs and epoxy resin.


2003 ◽  
Vol 57 (7) ◽  
pp. 1256-1260 ◽  
Author(s):  
W.X Chen ◽  
J.P Tu ◽  
Z.D Xu ◽  
W.L Chen ◽  
X.B Zhang ◽  
...  

2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yitian Peng ◽  
Zhonghua Ni

The oxidized multiwalled carbon nanotubes (MWCNTs) were modified with stearic acid (SA) molecules. The SA-modified MWCNTs were characterized with scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. The tribological properties of the oxidized and SA-modified MWCNTs as additives in water were comparatively investigated with a four-ball tester. The results showed the SA-modified MWCNTs in water have better tribological properties including friction reduction and antiwear than oxidized MWCNTs. The possible mechanism of SA-modified MWCNT as an additive in water was discussed. This research provides the opportunity for the lubricant application of MWCNTs.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2889 ◽  
Author(s):  
Giuseppe Cirillo ◽  
Orazio Vittorio ◽  
David Kunhardt ◽  
Emanuele Valli ◽  
Florida Voli ◽  
...  

A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.


Sign in / Sign up

Export Citation Format

Share Document