Multiscale Modeling of Dynamic Characteristics of Carbon Nanotube Reinforced Nanocomposites

NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650083 ◽  
Author(s):  
Sachin O. Gajbhiye ◽  
S. P. Singh

A unique atomic structure of carbon nanotube unveils outstanding properties. This makes it potentially highly valued reinforcing material to strengthen composite materials. The methodology is established in this research paper to investigate the static and dynamic characteristics of the nanocomposites. Repol polypropylene H110MA is used as a matrix material along with the different percentages of single-walled carbon nanotubes (SWCNTs). A concept of representative volume element (RVE) is considered to study the various properties of the nanocomposite material. The carbon–carbon bond of nanotube is modeled using Tersoff–Brenner potential and represented by space frame element. The matrix material properties are tested in the laboratory which are further used to model it and represented by three-dimensional continuum elements. The interaction between nanotube and polymer matrix is modeled using “Lennard–Jones 6-12” potential represented by nonlinear spring elements. The effect of reinforcement, chirality, % volume of SWCNT, atomic vacancy defect and Stone–Wales defect on the properties of nanocomposite are investigated. To see the effect of reinforcement, the eigenvalues of the RVE are extracted for different boundary conditions. The viscoplastic behavior of the matrix material is considered and the rate-dependent characteristics of the nanocomposite are studied. The damping property of the nanocomposite material is also investigated based on the phase lag between stress and strain field by applying harmonic strain at different frequencies.

2018 ◽  
Vol 4 (10) ◽  
pp. eaat7629 ◽  
Author(s):  
Hiroaki Gotoh ◽  
Chang Liu ◽  
Abu Bin Imran ◽  
Mitsuo Hara ◽  
Takahiro Seki ◽  
...  

An elastomer is a three-dimensional network with a cross-linked polymer chain that undergoes large deformation with a small external force and returns to its original state when the external force is removed. Because of this hyperelasticity, elastomers are regarded as one of the best candidates for the matrix material of soft robots. However, the comprehensive performance required of matrix materials is a special challenge because improvement of some matrix properties often causes the deterioration of others. For example, an improvement in toughness can be realized by adding a large amount of filler to an elastomer, but to the impairment of optical transparency. Therefore, to produce an elastomer exhibiting optimum properties suitable for the desired purpose, very elaborate, complicated materials are often devised. Here, we have succeeded in creating an optically transparent, easily fabricated elastomer with good extensibility and high toughness by using a polyrotaxane (PR) composed of cyclic molecules and a linear polymer as a cross-linking agent. In general, elastomers having conventional cross-linked structures are susceptible to breakage as a result of loss of extensibility at high cross-linking density. We found that the toughness of the transparent elastomer prepared using the PR cross-linking agent is enhanced along with its Young’s modulus as cross-linking density is increased.


Materials ◽  
2003 ◽  
Author(s):  
Michael H. Santare ◽  
Wenzhong Tang ◽  
John E. Novotny ◽  
Suresh G. Advani

High-density polyethylene (HDPE) was used as the matrix material for a carbon nanotube (CNT) polymer composites. Multi-wall carbon nanotube composite films were fabricated using the melt processing method. Composite samples with 0%, 1%, 3% and 5% nanotube content by weight were tested. The mechanical properties of the films were measured by the small punch test and wear resistance was measured with a block-on-ring wear tester. Results show increases in the stiffness, peak load, work-to-failure and wear resistance with increasing nanotube content.


2015 ◽  
Vol 12 (105) ◽  
pp. 20150111 ◽  
Author(s):  
Hannah Weisbecker ◽  
Michael J. Unterberger ◽  
Gerhard A. Holzapfel

Structurally motivated material models may provide increased insights into the underlying mechanics and physics of arteries under physiological loading conditions. We propose a multiscale model for arterial tissue capturing three different scales (i) a single collagen fibre; (ii) bundle of collagen fibres; and (iii) collagen network within the tissue. The waviness of collagen fibres is introduced by a probability density function for the recruitment stretch at which the fibre starts to bear load. The three-dimensional distribution of the collagen fibres is described by an orientation distribution function using the bivariate von Mises distribution, and fitted to experimental data. The strain energy for the tissue is decomposed additively into a part related to the matrix material and a part for the collagen fibres. Volume fractions account for the matrix/fibre constituents. The proposed model only uses two parameters namely a shear modulus of the matrix material and a (stiffness) parameter related to a single collagen fibre. A fit of the multiscale model to representative experimental data obtained from the individual layers of a human thoracic aorta shows that the proposed model is able to adequately capture the nonlinear and anisotropic behaviour of the aortic layers.


MRS Bulletin ◽  
2021 ◽  
Vol 46 (2) ◽  
pp. 152-158 ◽  
Author(s):  
Daniel M. Cunha ◽  
Mark Huijben

AbstractPlanar two-dimensional (2D) solid-state lithium-ion batteries exhibit an undesirable energy versus power balance, which can be dramatically improved by the application of three-dimensional (3D) geometries. Current ceramics-based nanocomposites exhibit limited control of the distribution and orientation of the nanoparticles within the matrix material. However, the tailoring of functionalities by the strong coupling between the two phases and their interfaces, present in epitaxial 3D vertically aligned nanocomposites (VANs), show promising advantages over the conventional 2D planar multilayers. Although a range of epitaxial VANs have been studied in the last decade, lithium-based VANs toward battery applications have remained mostly unexplored. Interestingly, two recent studies by Qi et al. and Cunha et al. demonstrate the unique potential of lithium-based VANs toward the realization of 3D solid-state batteries with enhanced energy storage performance. In this article, we will discuss these promising results as an enhanced current collector within the cathode or as an integrated solid-state cathode-electrolyte composite. Furthermore, we will describe different design configurations that can be applied to realize self-assembled VAN-based complete 3D battery devices.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1971-1975 ◽  
Author(s):  
Cheol Kim ◽  
Dong Yeub Lee

Piezoelectric Fiber Composite with Interdigitated Electrodes (PFCIDE) was previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by optimizing the stacking sequence and changing the matrix material. This paper presents the numerical optimization of a piezoelectric fiber/piezoelectric matrix composite actuator with IDE (PFPMIDE). Various concepts from different backgrounds, including three-dimensional linear elastic and dielectric theories, have been incorporated into the present linear piezoelectric model. To see the structural responses of the actuator integrated with the PFPMIDE, three dimensional finite element formulations were derived. Numerical analyses show larger center displacement of the curved actuator with the PFPMIDE due to optimization of the piezoelectric fiber angles. This paper presents the concept of a curved actuator that occurs naturally via thermal residual stress during the curing process, as well as the optimization of the maximum curved actuator displacement, which is accomplished using the Davidon-Fletcher-Powell (DFP) method.


1969 ◽  
Vol 39 (7) ◽  
pp. 618-626 ◽  
Author(s):  
Peter Van Dyke ◽  
John M. Hedgepeth

The solution of the two-dimensional, elastic, multiple-filament-failure stress concentration problem led to the treatment of three-dimensional, elastic failure models and a two-dimensional, plastic failure model where an ideally plastic behavior of the matrix material adjacent to a broken filament was assumed. Another plastic behavior is proposed wherein the bond between the broken filament and the adjacent matrix material fails completely after reaching a prescribed stress level. This failure formulation is applied to five- and seven-element-width models as well as to the infinite element case. Both the bond failure and matrix yield models are then extended to the three-dimensional cases with both square and hexagonal element configurations.


2012 ◽  
Vol 18-19 ◽  
pp. 117-128 ◽  
Author(s):  
Meysam Rahmat ◽  
Pascal Hubert

Mechanical performance of nanocomposites is strongly dependent on the interaction properties between the matrix and the reinforcement. Therefore, the aim of this work is to investigate the carbon nanotube – polymer interaction in nanocomposites. With the ever-increasing power of computers, and enormous advantage of parallel computing techniques, molecular dynamics is the favourite technique to simulate various atomic and molecular systems for this application. In order to simulate nanocomposites using molecular dynamics techniques, a stepwise approach was followed. First, a single-walled carbon nanotube was modelled as the reinforcing material. The validity of the model was examined by applying simple tension boundary conditions and comparing the results with the literature. Next, PMMA chains, with different geometries and molecular weights, were modelled employing the chemical potentials extracted from the literature. The last step included the modelling of the nanotubes surrounded by the matrix material and the investigation of the energy minimization for the system. Based on the results, the non-covalent interaction energy between a single-walled carbon nanotube and the PMMA matrix was obtained.


2021 ◽  
pp. 002199832098832
Author(s):  
Bedri Onur Kucukyildirim ◽  
Aysegul Akdogan Eker

Carbon nanotube (CNT) reinforced 6063 aluminum (Al) matrix composites were fabricated by vacuum-assisted infiltration of molten 6063 Al alloy into a CNT preform to enhance compressive mechanical properties. Preforms were produced with different amounts of chemically functionalized CNTs to obtain three different CNT reinforcement ratios (0.25, 0.50, and 0.75 wt.%). In addition to the investigation of properties throughout all stages of the preparation of the CNTs, CNT preforms and fabricated composites by various methods of analysis, all steps of the composite fabrication process, as well as the compressive mechanical test results of CNT/6063 Al composites are all discussed. Approximately 250% and 280% increases in the yield and ultimate compressive strength, respectively, are achieved with low-purity CNT addition. Consequently, it is confirmed from the micrographs that the mechanical enhancements of the composites are mainly interrelated with the successful bridging of CNTs in the matrix material. Meanwhile, it is observed that both the modified Halpin-Tsai model and the modified Halpin-Tsai model developed with a dispersion-based prediction model results match with experimental results. Overall results can be accepted as developmental stages of significant progress in the CNT preform reinforced metal matrix composites field.


2018 ◽  
Vol 9 (1) ◽  
pp. 2-16
Author(s):  
Konstantinos Spanos ◽  
Androniki Tsiamaki ◽  
Nicolaos Anifantis

Purpose The purpose of this paper is to implement a micromechanical hybrid finite element approach in order to investigate the stress transfer behavior of composites reinforced with hexagonal boron nitride (h-BN) nanosheets. Design/methodology/approach For the analysis of the problem, a three-dimensional representative volume element, consisting of three phases, has been used. The reinforcement is modeled discretely using spring elements of specific stiffness while the matrix material is modeled as a continuum medium using solid finite elements. The third phase, the intermediate one, known as the interface, has been simulated by appropriate stiffness variations which define a heterogeneous region affecting the stress transfer characteristics of the nanocomposite. Findings The results show a good agreement with corresponding ones from the literature and also the effect of a number of factors is indicated in stress transfer efficiency. Originality/value This is the first time that such a modeling is employed in the stress transfer examination of h-BN nanocomposites.


2000 ◽  
Author(s):  
W. Y. Chien ◽  
J. Pan ◽  
S. C. Tang

Abstract The influence of plastic anisotropy on the plastic behavior of porous ductile materials is investigated by a three-dimensional finite element analysis. A unit cell of cube containing a spherical void is modeled. The Hill quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The matrix material is assumed to be elastic perfectly plastic. Macroscopically uniform displacements are applied to the faces of the cube. The finite element computational results are compared with those based on the closed-form anisotropic Gurson yield criterion suggested in Liao et al. (Mechanics of Materials, 1997, pp. 213-226). Three fitting parameters are suggested in the closed-form yield criterion to fit the results based on the modified yield criterion to those of finite element computations.


Sign in / Sign up

Export Citation Format

Share Document