Substrate-Immersed Solvothermal Synthesis of Ordered SiO2/Ag Arrays as Catalytic SERS Substrates

NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850049 ◽  
Author(s):  
Chang Liu ◽  
Qianqian Su ◽  
Li Li ◽  
Jie Sun ◽  
Jian Dong ◽  
...  

In this work, we designed a simple substrate-immersed solvothermal route for the one-step synthesis of novel ordered SiO2/Ag arrays, employing SiO2 colloidal crystals as templates and alcohol as reducing agent. The Ag nanoparticles were uniformly deposited in situ onto SiO2 colloidal crystals, which exhibited high surface enhanced Raman spectroscopy (SERS) activity and uniform SERS intensity. It was found that ordered SiO2/Ag arrays could rapidly scavenge the absorbed-Nile blue A (NBA) molecules from the surfaces with the assistance of H2O2, while the SERS signals of NBA decreased sharply and almost completely disappeared within four minutes. This can be attributed to the superior catalytic activity of Ag nanoparticles. After five times of re-immersion and re-absorbing process of NBA, the substrates could still keep [Formula: see text] 74.8% SERS intensity versus the original. The high activity and durability of the as-prepared SiO2/Ag SERS substrate endow them as a promising candidate for trace detection.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Song ◽  
Xin Li ◽  
Sweejiang Yoo ◽  
Yuan Wu ◽  
Weihua Liu ◽  
...  

Surface enhanced Raman spectroscopy (SERS) is a powerful analytical technique and has been most intensively studied. In this work, electroless deposition is proposed for Ag nanoparticles (NPs) decorated on chemical vapor deposition (CVD) growth graphene sheets (GS) to create hybrid SERS substrate. From three aspects of size distribution, morphology, and coverage, Ag NPs controllable decoration on GS and SERS enhancement factors of the hybrid SERS substrate is investigated. 200–300 times enhanced SERS intensities are detected from the Ag NPs on GS hybrid as compared to pure GS. Controllable decoration is crucial for improving SERS enhancement factorsβEF, becauseβEFfrom quasi cubic Ag NPs on GS is 6.53 times stronger than that from spheric one; 1.6 timesβEFis detected while the Ag NPs size distribution is reduced to half, and when the coverage is doubled,βEFis nearly doubled. This controllable Ag NPs/GS hybrid is capable of serving as a high performance SERS substrate for efficient chemical and biological sensing applications.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanlin Mi ◽  
Yinzhou Yan ◽  
Mengyuan Wang ◽  
Lixue Yang ◽  
Jing He ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) has been widely investigated and employed as a powerful optical analytical technique providing fingerprint vibrational information of molecules with high sensitivity and resolution. In addition to metallic nanostructure, dielectric micro-/nano-structures with extraordinary optical manipulation properties have demonstrated capability in enhanced Raman scattering with ultralow energy losses. Here we report a facile cascaded structure composed of a large microsphere (LMS) and a small microsphere array with Ag nanoparticles as a novel hybrid SERS substrate, for the first time. The cascaded microsphere-coupled SERS substrate provides a platform to increase the molecular concentration, boost the intensity of localized excitation light, and direct the far-field emission, for giant Raman enhancement. It demonstrates the maximum enhancement factor of Raman intensity greater than 108 for the limit of detection down to 10−11 M of 4-nitrothiphenol molecules in aqueous solution. The present work inspires a novel strategy to fabricate cascaded dielectric/metallic micro-/nano-structures superior to traditional SERS substrates towards practical applications in cost-effective and ultrahigh-sensitive trace-detection.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3184
Author(s):  
Gitchka G. Tsutsumanova ◽  
Neno D. Todorov ◽  
Stoyan C. Russev ◽  
Miroslav V. Abrashev ◽  
Victor G. Ivanov ◽  
...  

Micro- and nanoflowers are a class of materials composed of particles with high surface-to-volume ratio. They have been extensively studied in the last decade due to simple preparation protocols and promising applications in biosensing, as drug delivery agents, for water purification, and so on. Flowerlike objects, due to their highly irregular surface, may act also as plasmonic materials, providing resonant coupling between optical waves and surface plasmon excitations. This fact allows us to infer the possibility to use micro- and nanoflowers as effective surface-enhanced Raman scattering (SERS) substrate materials. Here, we report on the design and Raman enhancement properties of silver flowerlike structures, deposited on aluminum surface. A simple and cost-effective fabrication method is described, which leads to SERS substrates of high developed surface area. The morphology of the silver flowers on a nanoscale is characterized by self-organized quasiperiodic stacks of nanosheets, which act as plasmonic cavity resonators. The substrates were tested against rhodamine-6G (R6G) water solutions of concentration varying between 10−3 M and 10−7 M. Optimal SERS enhancement factors of up to 105 were established at R6G concentrations in the 10−6–10−7 M range.


Author(s):  
Victor Genchev Ivanov ◽  
Gitchka Tsutsumanova ◽  
Neno Todorov ◽  
Stoyan Russev ◽  
Miroslav Abrashev ◽  
...  

Micro- and nanoflowers are a class of materials composed of particles with high surface-to-volume ratio. They are being extensively studied in the last decade due to simple preparation protocols and promising applications in biosensing, as drug delivery agents, for water purification and so on. Flowerlike objects, due to their highly irregular surface, may act also as plasmonic materials, providing resonant coupling between optical waves and surface plasmon excitations. This fact infers for the possibility to use micro- and nanoflowers as effective surface-enhanced Raman scattering (SERS) substrate materials. Here, we report on the design and Raman enhancement properties of silver flowerlike structures, deposited on aluminum surface. A simple and cost-effective fabrication method is described, which leads to SERS substrates of high developed surface area. The morphology of the silver flowers on a nanoscale is characterized by self-organized quasiperiodic stacks of nanosheets, which act as plasmonic cavity-resonators. The substrates were tested against rhodamine-6G (R6G) water solutions of concentration varying between 10–3 M and 10–7 M. Optimal SERS enhancement factors of up to 105 were established at R6G concentrations in the range 10–6 – 10–7 M.


2021 ◽  
Vol 22 (22) ◽  
pp. 12191
Author(s):  
Puran Pandey ◽  
Sundar Kunwar ◽  
Ki-Hoon Shin ◽  
Min-Kyu Seo ◽  
Jongwon Yoon ◽  
...  

In this work, we develop a Ag@Al2O3@Ag plasmonic core–shell–satellite (PCSS) to achieve highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS) detection of probe molecules. To fabricate PCSS nanostructures, we employ a simple hierarchical dewetting process of Ag films coupled with an atomic layer deposition (ALD) method for the Al2O3 shell. Compared to bare Ag nanoparticles, several advantages of fabricating PCSS nanostructures are discovered, including high surface roughness, high density of nanogaps between Ag core and Ag satellites, and nanogaps between adjacent Ag satellites. Finite-difference time-domain (FDTD) simulations of the PCSS nanostructure confirm an enhancement in the electromagnetic field intensity (hotspots) in the nanogap between the Ag core and the satellite generated by the Al2O3 shell, due to the strong core–satellite plasmonic coupling. The as-prepared PCSS-based SERS substrate demonstrates an enhancement factor (EF) of 1.7 × 107 and relative standard deviation (RSD) of ~7%, endowing our SERS platform with highly sensitive and reproducible detection of R6G molecules. We think that this method provides a simple approach for the fabrication of PCSS by a solid-state technique and a basis for developing a highly SERS-active substrate for practical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


2021 ◽  
Vol 11 (17) ◽  
pp. 8067
Author(s):  
Zixun Jia ◽  
Sarah Asiri ◽  
Asma Elsharif ◽  
Widyan Alamoudi ◽  
Ebtesam Al-Suhaimi ◽  
...  

Rapid detection of bacteria is a very critical and important part of infectious disease treatment. Sepsis kills more than 25 percent of its victims, resulting in as many as half of all deaths in hospitals before identifying the pathogen for patients to get the right treatment. Raman spectroscopy is a promising candidate in pathogen diagnosis given its fast and label-free nature, only if the concentration of the pathogen is high enough to provide reasonable sensitivity. This work reports a new design of surface-enhanced Raman spectroscopy (SERS) substrate which will provide high enough sensitivity and fast and close contact of the target structure to the optical hot spots for immunomagnetic capturing-based bacteria-concentrating technique. The substrate uses inverted nanocone structure arrays made of transparent PDMS (Polydimethylsiloxane) to funnel the light from the bottom to the top of the cones where plasmonic gold nanorods are located. A high reflective and low loss layer is deposited on the outer surface of the cone. Given the geometry of cones, photons are multi-reflected by the outer layer and thus the number density of photons at hotspots increases by an order of magnitude, which could be high enough to detect immunomagnetically densified bacteria.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012084
Author(s):  
Hammad R. Humud ◽  
Fatimah Jumaah Moaen

Abstract The current study examines recent advancements in surface-enhanced Raman scattering (SERS), a technique that employs flexible surfaces as an active substrate, this surfaces consist from two-dimensional thermo-plasmonic grating. With 53 nm Au layer (was deposited on the 2D grating structure of the PDMS by the PVD method). The explosive wire technique was used to preparing Ag nanoparticles that were used for the purpose of SERS. The effect of the plasmonic nanostructures on the absorption spectra and Surface - Enhanced Raman Scattering (SERS) activities was examined. Rhodamine 6G dye was used as a probe molecule. X-Ray diffraction (XRD) was used to examine the structural characteristics of the nanoparticles. The morphology was assessed using Field Emission Scanning Electron Microscopy(FESEM). A twin beam UV-Vis Spectrophotometer was used to measure the absorption of the combined Rh6G dye (concentration 1×10“–6M) with the nanostructures. a Sunshine Raman microscope system and a 50mm objective lens, used for investigating the Raman spectra of the Rh6G combined with nanostructures. The results showed that the enhancement factor (EF) for SERS of R6G (1×M) reached to (2.2×10 3) When using Ag nanoparticles and (0.08 × 103) when R6G deposited directly on the flexible substrates without nanostructures at the wave number (1650 cm−1), we produced a recyclable, homogeneous, and highly sensitive SERS substrate with dependable reproducibility. For the SERS substrate, a surface made up of two-dimensional (2D) flexible grating substrates was chosen to provide multiple modalities in electrical and medicinal applications.


Sign in / Sign up

Export Citation Format

Share Document