Characterization of NASICON-type Na solid electrolyte ceramics by impedance spectroscopy

2014 ◽  
Vol 07 (06) ◽  
pp. 1440002 ◽  
Author(s):  
E. Kazakevičius ◽  
A. Kežionis ◽  
L. Žukauskaitė ◽  
M. Barré ◽  
T. Šalkus ◽  
...  

Na solid electrolytes are cheaper than the ones of Li and could be of interest to apply in secondary batteries and gas sensors. In the present work, the NASICON-type Na 1.3 Ti 1.7 Al 0.3( PO 4)3 compound has been synthesized by Pechini method and the phase purity of the compound was confirmed by XRD. Ceramics of the compound were prepared in several different sintering temperatures and the morphology of the samples was examined by SEM. The investigation of the electrical properties was performed in 10 Hz to 3 ⋅ 109 Hz and 300–500 K frequency and temperature ranges by means of impedance spectroscopy. The impedance spectra were analyzed and observed dispersions were related to microstructure of the ceramics.

2017 ◽  
Vol 43 (18) ◽  
pp. 16408-16415 ◽  
Author(s):  
Licurgo Borges Winck ◽  
Jorge Luiz de Almeida Ferreira ◽  
Jesus Mauricio Gonzalez Martinez ◽  
José Alexander Araujo ◽  
Ana Candida Martins Rodrigues ◽  
...  

Batteries ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 53 ◽  
Author(s):  
Michael A. Danzer

Impedance spectroscopy is a universal nondestructive tool for the analysis of the polarization behavior of electrochemical systems in frequency domain. As an extension and enhancement of the standard impedance spectroscopy, the distribution of relaxation times (DRT) analysis was established, where the spectra are transferred from frequency into time domain. The DRT helps to analyze complex impedance spectra by identifying the number of polarization processes involved without prior assumptions and by separating and quantifying their single polarization contributions. The DRT analysis, as introduced in literature, claims to be a model-free approach for the characterization of resistive-capacitive systems. However, a data preprocessing step based on impedance models is often required to exclude non-resistive-capacitive components off the measured impedance spectra. The generalized distribution of relaxation times (GDRT) analysis presented in this work is dedicated to complex superposed impedance spectra that include ohmic, inductive, capacitive, resistive-capacitive, and resistive-inductive effects. The simplified work flow without preprocessing steps leads to a reliable and reproducible DRT analysis that fulfills the assumption of being model-free. The GDRT is applicable for the analysis of electrochemical, electrical, and even for non-electrical systems. Results are shown for a lithium-ion battery, a vanadium redox flow battery, and for a double-layer capacitor.


2020 ◽  
Vol 10 (18) ◽  
pp. 6576
Author(s):  
Manuel Vázquez-Nambo ◽  
José-Antonio Gutiérrez-Gnecchi ◽  
Enrique Reyes-Archundia ◽  
Wuqiang Yang ◽  
Marco-A. Rodriguez-Frias ◽  
...  

The physicochemical characterization of pharmaceutical materials is essential for drug discovery, development and evaluation, and for understanding and predicting their interaction with physiological systems. Amongst many measurement techniques for spectroscopic characterization of pharmaceutical materials, Electrical Impedance Spectroscopy (EIS) is powerful as it can be used to model the electrical properties of pure substances and compounds in correlation with specific chemical composition. In particular, the accurate measurement of specific properties of drugs is important for evaluating physiological interaction. The electrochemical modelling of compounds is usually carried out using spectral impedance data over a wide frequency range, to fit a predetermined model of an equivalent electrochemical cell. This paper presents experimental results by EIS analysis of four drug formulations (trimethoprim/sulfamethoxazole C14H18N4O3-C10H11N3O3, ambroxol C13H18Br2N2O.HCl, metamizole sodium C13H16N3NaO4S, and ranitidine C13H22N4O3S.HCl). A wide frequency range from 20 Hz to 30 MHz is used to evaluate system identification techniques using EIS data and to obtain process models. The results suggest that arrays of linear R-C models derived using system identification techniques in the frequency domain can be used to identify different compounds.


2005 ◽  
Vol 498-499 ◽  
pp. 337-341 ◽  
Author(s):  
Daniela Russo Leite ◽  
W.C. Las ◽  
G. Brankovic ◽  
M.A. Zaghete ◽  
M. Cilense ◽  
...  

This paper reports a study of influence of Cr concentration on the electrical properties and microstructure of SnO2-based powders doped with Mn and Nb, prepared by an organic route (Pechini method). All the samples were compacted into discs and sintered at 1300°C for 3h, resulting in ceramics with relative density varying between 78% and 98%. The powders were characterized by X-ray diffraction analysis. Impedance spectroscopy characterization indicated that the conductivity decreases as Cr concentration increases, probably due to Cr segregation at grain boundaries, which reduces grain size, increasing the number of resistive boundaries.


Author(s):  
Jacques Sawadogo ◽  
Jean Boukari Legma

This study is inscribed in the framework of the valorization of traditional kitchen utensils recycled from aluminum waste in Burkina Faso. In fact, these traditional kitchen utensils made of recycled aluminum alloys occupy a very important place in Burkina Faso’s kitchen. The effect of foods for consumption on its local utensils was studied using the non-stationary technique and electrochemical impedance spectroscopy. For this purpose, a sample of utensil has been deducted on traditional production site. The corrosion behavior of the recycled aluminum alloy ok know chemical composition was evaluated by analyzing the impedance spectra obtained at the open circuit potential, in the salt media titrated at 3 g·L−1 and rice. Modeling electrical properties by using of a simple equivalent circuit made it possible to interpret the results obtained by impedance spectroscopy. The results showed a susceptibility to pitting corrosion and were confirmed by the electrochemical impedance spectroscopy method.


Sign in / Sign up

Export Citation Format

Share Document