Hydrothermal synthesis, characterization and gas sensing of Bi2MoxW1−xO6

2020 ◽  
Vol 13 (06) ◽  
pp. 2051032
Author(s):  
Li Zhang ◽  
Chengwen Song ◽  
Xiaoxing Zhang ◽  
Zhemin Shi ◽  
Jingkun Xiao

Bi2MoxW[Formula: see text]O6 microspheres are synthesized by simple one-step hydrothermal method and the morphological characterizations are performed by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The gas sensing of Bi2WO6, Bi2MoO6 and Bi2MoxW[Formula: see text]O6 is investigated. It can be concluded that the sensor of Bi2MoxW[Formula: see text]O6 has the same good sensitivity as pure Bi2MoO6 and Bi2WO6 to alcohol. It is noteworthy that the operating temperature of Bi2Mo[Formula: see text]W[Formula: see text]O6 is 200∘C which is lower than that of pure Bi2WO6 or Bi2MoO6 (240∘C), so Bi2MoxW[Formula: see text]O6 show its good property for alcohol gas sensing application.

2020 ◽  
Vol 98 (12) ◽  
pp. 771-778
Author(s):  
Xin Chang ◽  
Xiangyang Xu ◽  
Zhifeng Gao ◽  
Yingrui Tao ◽  
Yixuan Yin ◽  
...  

A nanocomposite, reduced graphene oxide (RGO) modified ZnCo2O4 (ZnCo2O4–RGO) was synthesized via one-step solvothermal method for activating persulfate (PS) to degrade bisphenol A (BPA). The morphology and structure of the nanocomposite were identified by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. RGO provides nucleation sites for ZnCo2O4 to grow and inhibits the agglomeration of the nanoparticles. The influence of different reaction conditions on the oxidation of BPA catalyzed by ZnCo2O4–RGO was investigated, including the content of RGO, the dosage of catalyst, the concentration of humic acid (HA), anions in the environment, the reaction temperature, and pH. BPA can be totally degraded within 20 min under optimized reaction conditions. The presence of HA, Cl−, and NO3− only has a slight effect on the oxidation of BPA, whereas the presence of either H2PO4− or HCO3− can greatly inhibit the reaction. ZnCo2O4–RGO shows good cycling stability and practical application potential. A reaction mechanism of the degradation of BPA was also explored.


2005 ◽  
Vol 83 (8) ◽  
pp. 1093-1097 ◽  
Author(s):  
Qingrui Zhao ◽  
Xuanjun Zhang ◽  
Qing Yang ◽  
Yi Xie

A direct and simple surfactant- and template-free route has been developed for the controlled synthesis of Sb2O3 belt-like microstructures. By adjusting the reactant ratio between SbCl3 and urea under solvothermal reaction conditions, broom-like belts and rods of Sb2O3 have been successfully prepared. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS) has been used to characterize the phases and morphologies of the as-prepared products. A possible formation mechanism is also discussed.Key words: antimony trioxide, solvothermal synthesis, broom-like belts.


2021 ◽  
Author(s):  
Pimpan Leangtanom ◽  
Anurat Wisitsoraat ◽  
Kata Jaruwongrangsee ◽  
Narong Chanlek ◽  
Adisorn Tuantranont ◽  
...  

Abstract In this work, CuO-loaded tetragonal SnO2 nanoparticles (CuO/SnO2 NPs) were synthesized using precipitation/impregnation methods with varying Cu contents of 0–25 wt% and characterized for H2S detection. The material phase, morphology, chemical composition and specific surface area of NPs were evaluated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller analysis. From gas-sensing data, the H2S responses of SnO2 NPs were greatly enhanced by CuO loading particularly at the optimal Cu content of 20 wt%. The 20 wt%CuO/SnO2 sensor showed an excellent response of 1.36⋅105 towards 10 ppm H2S and high H2S selectivity against H2, SO2, CH4 and C2H2 at a low optimum working temperature of 200°C. In addition, the sensor provided fast response and a low detection limit of less than 0.15 ppm. The CuO-SnO2 sensor could therefore be a potential candidate for H2S detection in environmental applications.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pimpan Leangtanom ◽  
Anurat Wisitsoraat ◽  
Kata Jaruwongrangsee ◽  
Narong Chanlek ◽  
Adisorn Tuantranont ◽  
...  

AbstractIn this work, CuO-loaded tetragonal SnO2 nanoparticles (CuO/SnO2 NPs) were synthesized using precipitation/impregnation methods with varying Cu contents of 0–25 wt% and characterized for H2S detection. The material phase, morphology, chemical composition, and specific surface area of NPs were evaluated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis. From gas-sensing data, the H2S responses of SnO2 NPs were greatly enhanced by CuO loading particularly at the optimal Cu content of 20 wt%. The 20 wt% CuO/SnO2 sensor showed an excellent response of 1.36 × 105 toward 10 ppm H2S and high H2S selectivity against H2, SO2, CH4, and C2H2 at a low optimum working temperature of 200 °C. In addition, the sensor provided fast response and a low detection limit of less than 0.15 ppm. The CuO–SnO2 sensor could therefore be a potential candidate for H2S detection in environmental applications.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 579
Author(s):  
Xu Zhang ◽  
Min Cai ◽  
Naxin Cui ◽  
Guifa Chen ◽  
Guoyan Zou ◽  
...  

Black TiO2 with doped nitrogen and modified carbon (b-N-TiO2/C) were successfully prepared by sol-gel method in the presence of urea as a source of nitrogen and carbon. The photocatalysts were characterized by field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, electron paramagnetic resonance (EPR), and UV-vis diffuse reflectance spectra (DRS). The doped nitrogen, introduced defects, and modified carbon played a synergistic role in enhancing photocatalytic activity of b-N-TiO2/C for the degradation of chlorophyll-a in algae cells. The sample, with a proper amount of phase composition and oxygen vacancies, showed the highest efficiency to degrade chlorophyll-a, and the addition of H2O2 promoted this photocatalysis degradation. Based on the trapping experiments and electron spin resonance (ESR) signals, a photocatalytic mechanism of b-N-TiO2/C was proposed. In the photocatalytic degradation of chlorophyll-a, the major reactive species were identified as OH and O2−. This research may provide new insights into the photocatalytic inactivation of algae cells by composite photocatalysts.


2013 ◽  
Vol 562-565 ◽  
pp. 543-548 ◽  
Author(s):  
Li Zhang ◽  
Fu Bo Gu ◽  
Zhi Hua Wang ◽  
Dong Mei Han ◽  
Guang Sheng Guo

In2O3/multi-walled carbon nanotube (MWCNT) nanocomposites containing different MWCNT contents were synthesized via direct growth of In2O3 nanoparticles on the functionalized MWCNTs. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results exhibited that In2O3 nanoparticles with a diameter of approximate 10 nm were densely decorated on the surface of the MWCNTs. The gas sensitive performance of the nanocomposites to ethanol was also investigated. It was found that In2O3/MWCNTs sensor showed much higher response than that of the pure In2O3 sensor. Moreover, the sensing mechanism was discussed.


2020 ◽  
Vol 10 ◽  
pp. 184798042090542 ◽  
Author(s):  
R Trejo-Tzab ◽  
JA Aguilar-Jiménez ◽  
P Quintana-Owen ◽  
Alejandro Ávila-Ortega ◽  
MA Alvarez-Lemus ◽  
...  

The main motivation of this work is to deposit two different metals (gold and silver) on titanium oxide nanoparticles surface in a one-step simple and fast physical process by applying a nitrogen plasma as the main source of nitrogen atoms to obtain nanostructured N-TiO2 − X/Au/Ag materials. The obtained nanomaterials were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. Based on the characterization results, we found that gold and silver nanoparticles were uniformly loaded on the titanium oxide nanocomposite surface, showing a surface plasmon absorption band due to the loading of the metal nanoparticles over titania samples. The results of this work have shown that nitrogen plasma technique is a more feasible and simple alternative to obtain the N-TiO2 − X/Au/Ag nanocomposite. Moreover, this plasma technique could be used to impregnate with other kind of metals over the surface of diverse nanomaterials.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Liu ◽  
Hongtao Yu ◽  
Xie Quan ◽  
Shuo Chen

MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.


Sign in / Sign up

Export Citation Format

Share Document