Modeling study of solid-particle erosion with consideration of particle velocity dependent model parameters

Author(s):  
Shijie Qian ◽  
Kuiying Chen ◽  
Rong Liu ◽  
Ming Liang

An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear, respectively, with particle velocity, particle size and density, as well as target material properties, is proposed. This model is capable of predicting the erosion rates for a material under solid-particle impact over a specific range of particle velocity at the impingement angle between [Formula: see text] and [Formula: see text], provided that the experimental data of erosion rate for the material at a particle velocity within this range and at impingement angles between [Formula: see text] and [Formula: see text] are available. The proposed model is applied on three distinct types of materials: aluminum, perspex and graphite, to investigate the dependence behavior of the model parameters on particle velocity for ductile and brittle materials. The predicted model parameters obtained from the model are validated by the experimental data of aluminum plate under Al2O3 particle impact. The significance and limitation of the model are discussed; possible improvements on the model are suggested.

Author(s):  
G. Haider ◽  
A. Asgharpour ◽  
J. Zhang ◽  
S. A. Shirazi

Abstract During production of oil and gas from wells, solid particles such as removed scales or sand may accompany petroleum fluids. These particles present in this multiphase flow can impact inner walls of transportation infrastructure (straight pipelines, elbows, T-junctions, flow meters, and reducers) multiple times. These repeated impacts degrades the inner walls of piping and as a result, reduce wall thickness occur. This is known as solid particle erosion, which is a complex phenomenon involving multiple contributing factors. Prediction of erosion rates and location of maximum erosion are crucial from both operations and safety perspective. Various mechanistic and empirical solid particle erosion models are available in literature for this purpose. The majority of these models require particle impact speed and impact angle to model erosion. Furthermore, due to complex geometric shapes of process equipment, these solid particles can impact and rebound from walls in a random manner with varying speeds and angles. Hence, this rebound characteristic is an important factor in solid particle erosion modeling which cannot be done in a deterministic sense. This challenge has not been addressed in literature satisfactorily. This study uses experimental data to model particle rebound characteristics stochastically. Experimental setup consists of a nozzle and specimen, which are aligned at different angles so particles impact the specimen at various angles. Information regarding particle impact velocities before and after the impacts are obtained through Particle Tracking Velocimetry (PTV) technique. Distributions of normal and tangential components of particle velocities were determined experimentally. Furthermore, spread or dispersion in these velocity components due to randomness is quantified. Finally, based on these experimental observations, a stochastic rebound model based on normal and tangential coefficients of restitutions is developed and Computational Fluid Dynamics (CFD) studies were conducted to validate this model. The model predictions are compared with experimental data for elbows in series. It is found that the rebound model has a great influence on erosion prediction of both first and second elbows especially where subsequent particle impacts are expected.


2021 ◽  
Vol 63 (12) ◽  
pp. 1142-1149
Author(s):  
Aygen Ahsen Erdoğan ◽  
Erol Feyzullahoğlu ◽  
Sinan Fidan ◽  
Tamer Sinmazçelik

Abstract AA6082-T6 aluminium alloy is a candidate material, specifically in aviation applications, which could be exposed to solid particle erosion. Solid particle erosion occurs due to repetitive high-speed impact of erodent particles on a target material. Every individual impingement of the erodent particle results in elastic/plastic deformations and material removal from the target material. In this study, solid particle erosion investigations were carried out under 1.5 and 3 bar with 60 and 120 mesh alumina particles. Both erosion rates and worn volumes of the samples were calculated and measured. Also, the authors present the plastic deformation rate in this study as a proportion of the actual (measured) worn volume to the equivalent volume of the mass loss. In addition, the average surface roughness of the samples were investigated, which is another parameter for understanding the effect of plastic deformation on surface properties during particle erosion.


Author(s):  
Assaad Al Sahlani ◽  
Kelvin Randhir ◽  
Nesrin Ozalp ◽  
James Klausner

Abstract Concentrated solar thermochemical storage in the form of a zero-emission fuel is a promising option to produce long-duration energy storage. The production of solar fuel can occur within a cylindrical cavity chemical reactor that captures concentrated solar radiation from a solar field. A heat transfer model of a tubular plug-flow reactor is presented. Experimental data from a fixed bed tubular reactor are used for model comparison. The system consists of an externally heated tube with counter-current flowing gas and moving solid particles as the heated media. The proposed model simulates the dynamic behavior of temperature profiles of the tube wall, gas, and particles under various gas flow rates and residence times. The heat transfer between gas-wall, solid particle-wall, gas-solid particle, are numerically studied. The model is compared with experiments using a 4 kW furnace with a 150 mm heating zone surrounding a horizontal alumina tube (reactor) with 50.8 mm OD and a thickness of 3.175 mm. Solid fixed particles of magnesium manganese oxide (MgMn2O4) with the size of 1 mm are packed within the length of 250 mm at the center of the tube length. Simulation results are assessed with respect to fixed bed experimental data for four different gas flow rates, namely 5, 10, 15, 20 standard liters per minute of air, and furnace temperatures in the range of 200 to 1200 °C. The simulation results showed good agreement with maximum steady state error that is less than 6% of those obtained from the experiments among all runs. The proposed model can be implemented as a low-order physical model for the control of temperature inside plug-flow reactors for thermochemical energy storage (TCES) applications.


2017 ◽  
Vol 231 (11-12) ◽  
Author(s):  
Humbul Suleman ◽  
Abdulhalim Shah Maulud ◽  
Zakaria Man

AbstractA computationally simple thermodynamic framework has been presented to correlate the vapour-liquid equilibria of carbon dioxide absorption in five representative types of alkanolamine mixtures. The proposed model is an extension of modified Kent Eisenberg model for the carbon dioxide loaded aqueous alkanolamine mixtures. The model parameters are regressed on a large experimental data pool of carbon dioxide solubility in aqueous alkanolamine mixtures. The model is applicable to a wide range of temperature (298–393 K), pressure (0.1–6000 kPa) and alkanolamine concentration (0.3–5 M). The correlated results are compared to the experimental values and found to be in good agreement with the average deviations ranging between 6% and 20%. The model results are comparable to other thermodynamic models.


Author(s):  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Solid particle erosion is a major problem in many industrial applications where solids are entrained in gas and/or liquid flows. For example, erosion of production equipment, well tubing and fittings is a major operating problem that costs the petroleum industry millions of dollars each year. Entrained sand particles in the oil/gas production fluid impinge on the inner surfaces of the pipes, fittings, and valves that result in solid particle erosion. In certain production situations with corrosive fluids, erosion is compounded with corrosion causing severe erosion-corrosion. Even in situations when sand control means are utilized such as gravel packing and sand screens, small sand particles can plug sand screens promoting higher flow velocities through other portions of the screens causing failure and allowing sand production. Erosion can cause severe damage to the piping and equipment wall, resulting in loss of equipment and production downtime. Solid particle erosion is a mechanical process by which material is removed gradually from a solid surface due to repeated impingement of small solid particles on the metal surface. The erosion phenomenon is highly complicated due to the number of parameters affecting the erosion severity, such as production flow rate, sand rate, fluid properties, flow regime, sand properties, sand shape and size, wall material of equipment, and geometry of the equipment. For ductile materials, erosion is caused by localized deformation and cutting action from repeated particle impacts. It is well known that solid particle erosion rates are a strong function of the impacting velocity of particles and also the mass of impacting particles. Predicting solid particle erosion in multiphase flow is a complex task due to existence of different flow patterns. The existence of different flow patterns and sand and liquid holdup in vertical and horizontal pipes means that a unique erosion model has to be developed for each flow regime if the model is to account for the number and velocity of impacting particles. The particle impact velocity is affected by the pipe geometry, carrying fluid properties and velocity, flow pattern, particle size and distribution in the flow. Among different multiphase flow patterns in horizontal and vertical flows, severe erosion damage can occur in annular and slug flows with high gas velocities and low liquid velocities. Although there is a lack of accurate mechanistic models to predict solid particle erosion, there is a need to develop engineering prediction models for multiphase flows. Earlier erosion calculation procedures in multiphase flow were primarily based on empirical data and the accuracy of those “empirical” models was limited to the flow conditions of the experiments. A framework for developing a model has been established for predicting erosion rates of elbows in multiphase flow. The model considers the effects of particle velocities in gas and liquid phases upstream of the elbow. Local fluid velocities in multiphase flow are used to determine representative particle impact velocities. Also based on data representing sand holdup for several flow regimes, the masses of impacting particles are estimated. Erosion experiments are also conducted on elbows in two-inch and three-inch large scale multiphase flow loops with gas, liquid and sand flowing in vertical and horizontal test sections. Based on the experimental data for different flow regimes including slug, wet gas and annular flow a method for improving a previous model is discussed and is being implemented to predict erosion rates in multiphase flow.


2017 ◽  
Vol 27 (10) ◽  
pp. 1451-1481 ◽  
Author(s):  
Oleg Vorobiev ◽  
Eric Herbold ◽  
Souheil Ezzedine ◽  
Tarabay Antoun

The paper describes a novel computational approach to refine continuum models for penetration calculations which involves two stages. At the first stage, a trial continuum model is used to model penetration into a concrete target. Model parameters are chosen to match experimental data on penetration depth. Deformation histories are recorded at few locations in the target around the penetrator. In the second stage, these histories are applied to the boundaries of a representative volume comparable to the element size in large scale penetration simulation. Discrete-continuum approach is used to model the deformation and failure of the material within the representative volume. The same deformation histories are applied to a single element which uses the model to be improved. Continuum model may include multiple parameters or functions which cannot be easily found using experimental data. We propose using mesoscale response to constrain such parameters and functions. Such tuning of the continuum model using typical deformation histories experienced by the target material during the penetration allows us to minimize the parameter space and build better models for penetration problems which are based on physics of penetration rather than intuition and ad hoc assumptions.


1998 ◽  
Vol 363 ◽  
pp. 25-56 ◽  
Author(s):  
M. K. LYON ◽  
L. G. LEAL

A modified laser-Doppler velocimetry method is utilized to measure fully developed particle velocity and concentration profiles, as well as the mean-square amplitudes of velocity fluctuations (i.e. one component of the so-called particle temperature), for concentrated monodisperse suspensions across the narrow gap of a rectangular channel. A stable index-of-refraction match of the suspending and particulate phases in conjunction with short-focal-length focusing optics has enabled data acquisition up to particle volume fractions of 0.50. In general, the particle concentration distributions possess a maximum near the channel centreline and a minimum at the channel walls. Coupled to these concentration distributions were blunted velocity profiles, and particle velocity fluctuation distributions that had a sharp maximum at gap positions approximately 80% of the way from the channel axis towards the walls. The particle velocity distributions were consistent with the absence of slip between particles and the suspending fluid.The experimental data were compared with theoretical predictions from the diffusive flux model (Leighton & Acrivos 1987; Phillips et al. 1992), a model due to Mills & Snabre (1995), and the suspensions balance model (McTigue & Jenkins 1992; Nott & Brady 1994). The influence of bulk particle concentration, suspension volumetric flow rate, and ratio of channel gap width to particle diameter on the fully developed profiles was qualitatively consistent with the theoretical predictions from all three models. For the diffusive flux and suspension balance models, we used both literature values for model parameters, and values obtained from a best fit to our entire set of experimental data. Overall, the Mills & Snabre and suspension balance models were found to provide a better quantitative fit to the experimental data than the diffusive flux model.


2006 ◽  
Vol 129 (4) ◽  
pp. 576-582 ◽  
Author(s):  
Quamrul H. Mazumder

Solid particle erosion of metal surfaces is a major problem in several fluid handling industries due to unpredicted equipment failure and production loss. The prediction of erosion is difficult even in a single-phase flow. The complexity of the problem increases significantly in a multiphase flow due to the existence of different flow patterns where the spatial distribution of the phases changes with the change of phase flow rates. Earlier predictive means of erosion in single and multiphase flows were primarily based on empirical data and were limited to the flow conditions of the experiments. A mechanistic model has been developed for predicting erosion in single-phase and multiphase flows considering the effects of solid particle impact velocities that cause erosion. Local fluid velocities and simplified equations are used to calculate erosion rates assuming a uniform distribution of solid particles in the liquid phase in the multiphase flow. Another assumption was that the solid particle velocities are similar to the velocity of the fluids surrounding the particles. As the model is based on the physics of multiphase flow and erosion phenomenon, it is more general than the previous models. The predicted erosion rates obtained by the mechanistic model are compared to experimental data available in the literature showing a reasonably good agreement.


Author(s):  
Assaad Alsahlani ◽  
Kelvin Randhir ◽  
Nesrin Ozalp ◽  
James Klausner

Abstract In this paper, heat transfer model of a tubular plug-flow reactor designed and manufactured for a solar fuel production is presented. Experimental data collected from a fixed bed tubular reactor testing are used for model comparison. The system consists of an externally heated tube with counter-current flowing gas and moving solid particles as the heated media. The proposed model simulates the dynamic behavior of temperature profiles of the tube wall, gas, and particles under various gas flow rates and residence times. The heat transfer between gas-wall, solid particle-wall, and gas-solid particle are numerically studied. The model results are compared with the results of experiments done using a 4 kW furnace with a 150 mm heating zone surrounding a horizontal alumina tube (reactor) with 50.8 mm outer diameter and thickness of 3.175 mm. Solid fixed particles of MgMn2O4 with the size of 1 mm are packed within length of 250 mm at the center of the tube length. Simulation results are assessed with respect to fixed bed experimental data for four different gas flow rates, namely 5, 10, 15, 20 standard liters per minute of air, and furnace temperatures in the range of 200 to 1200 °C. The simulation results showed good agreement with maximum steady state error that is less than 6% of those obtained from the experiments for all runs. The proposed model can be implemented as a low-order physical model for the control of temperature inside plug-flow reactors.


Author(s):  
Jianrong Wang ◽  
Siamack A. Shirazi

Abstract A model for predicting sand erosion in 90 degree elbows and bends has been developed based on computational fluid dynamics (CFD), particle tracking and erosion data. After the flow field was obtained from the flow (CFD) model, particles were introduced into the flow and particle trajectories were computed using a Lagrangian approach. A model was also implemented that accounts for the interaction between the particles and the target material. Based on predicted particle impingement velocities, erosion rates and penetration rates were predicted using the empirical equations for erosion ratio. The predicted penetration rates are compared with available experimental data for several different elbows. The agreement between the predicted penetration rates and the experimental data is good. The erosion model is applied to standard (short-radius) elbows and long-radius elbows to understand why long radius elbows have lower erosion (penetration) rates. In addition, based on many predictions and erosion rate results, a new CFD based correlation is developed and is recommended as a first-order approximation for engineering calculations to account for effects of elbow radius on erosion in long-radius elbows. This equation is for computing the ratio of the wall thickness loss (or the penetration rate) in a long-radius elbow to the penetration rate of a standard (short-radius) elbow. The results from the correlation agree well with the trend of available data in the literature.


Sign in / Sign up

Export Citation Format

Share Document