An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems

1998 ◽  
Vol 363 ◽  
pp. 25-56 ◽  
Author(s):  
M. K. LYON ◽  
L. G. LEAL

A modified laser-Doppler velocimetry method is utilized to measure fully developed particle velocity and concentration profiles, as well as the mean-square amplitudes of velocity fluctuations (i.e. one component of the so-called particle temperature), for concentrated monodisperse suspensions across the narrow gap of a rectangular channel. A stable index-of-refraction match of the suspending and particulate phases in conjunction with short-focal-length focusing optics has enabled data acquisition up to particle volume fractions of 0.50. In general, the particle concentration distributions possess a maximum near the channel centreline and a minimum at the channel walls. Coupled to these concentration distributions were blunted velocity profiles, and particle velocity fluctuation distributions that had a sharp maximum at gap positions approximately 80% of the way from the channel axis towards the walls. The particle velocity distributions were consistent with the absence of slip between particles and the suspending fluid.The experimental data were compared with theoretical predictions from the diffusive flux model (Leighton & Acrivos 1987; Phillips et al. 1992), a model due to Mills & Snabre (1995), and the suspensions balance model (McTigue & Jenkins 1992; Nott & Brady 1994). The influence of bulk particle concentration, suspension volumetric flow rate, and ratio of channel gap width to particle diameter on the fully developed profiles was qualitatively consistent with the theoretical predictions from all three models. For the diffusive flux and suspension balance models, we used both literature values for model parameters, and values obtained from a best fit to our entire set of experimental data. Overall, the Mills & Snabre and suspension balance models were found to provide a better quantitative fit to the experimental data than the diffusive flux model.

Author(s):  
Shijie Qian ◽  
Kuiying Chen ◽  
Rong Liu ◽  
Ming Liang

An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear, respectively, with particle velocity, particle size and density, as well as target material properties, is proposed. This model is capable of predicting the erosion rates for a material under solid-particle impact over a specific range of particle velocity at the impingement angle between [Formula: see text] and [Formula: see text], provided that the experimental data of erosion rate for the material at a particle velocity within this range and at impingement angles between [Formula: see text] and [Formula: see text] are available. The proposed model is applied on three distinct types of materials: aluminum, perspex and graphite, to investigate the dependence behavior of the model parameters on particle velocity for ductile and brittle materials. The predicted model parameters obtained from the model are validated by the experimental data of aluminum plate under Al2O3 particle impact. The significance and limitation of the model are discussed; possible improvements on the model are suggested.


1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Francesco Paolo La Mantia ◽  
Maria Chiara Mistretta ◽  
Vincenzo Titone

In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit for the experimental values of both rheological and mechanical properties.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


1978 ◽  
Vol 100 (1) ◽  
pp. 20-24 ◽  
Author(s):  
R. H. Rand

A one-dimensional, steady-state, constant temperature model of diffusion and absorption of CO2 in the intercellular air spaces of a leaf is presented. The model includes two geometrically distinct regions of the leaf interior, corresponding to palisade and spongy mesophyll tissue, respectively. Sun, shade, and intermediate light leaves are modeled by varying the thicknesses of these two regions. Values of the geometric model parameters are obtained by comparing geometric properties of the model with experimental data of other investigators found from dissection of real leaves. The model provides a quantitative estimate of the extent to which the concentration of gaseous CO2 varies locally within the leaf interior.


2012 ◽  
Vol 5 (4) ◽  
pp. 789-808 ◽  
Author(s):  
L. B. Cornman ◽  
R. K. Goodrich ◽  
P. Axelrad ◽  
E. Barlow

Abstract. The increased availability of radio occultation (RO) data offers the ability to detect and study turbulence in the Earth's atmosphere. An analysis of how RO data can be used to determine the strength and location of turbulent regions is presented. This includes the derivation of a model for the power spectrum of the log-amplitude and phase fluctuations of the permittivity (or index of refraction) field. The bulk of the paper is then concerned with the estimation of the model parameters. Parameter estimators are introduced and some of their statistical properties are studied. These estimators are then applied to simulated log-amplitude RO signals. This includes the analysis of global statistics derived from a large number of realizations, as well as case studies that illustrate various specific aspects of the problem. Improvements to the basic estimation methods are discussed, and their beneficial properties are illustrated. The estimation techniques are then applied to real occultation data. Only two cases are presented, but they illustrate some of the salient features inherent in real data.


1983 ◽  
Vol 105 (3) ◽  
pp. 277-284 ◽  
Author(s):  
P. Meijers ◽  
F. Roode

A general description of creep and plastic deformation based on overlay models is presented. This includes the description of time effects during plastic deformation at room temperature. A detailed procedure to obtain the model parameters is also discussed. The description has been evaluated for a large number of uniaxial and biaxial load histories on thin walled tubes. The materials involved are a 2 1/4 Cr-1 Mo steel stabilized with Niobium (WN 1.6770) and a 304 stainless steel (WN 1.4948). The theoretical predictions of the plastic deformations are found to be sufficiently accurate. The evaluation of the phenomenological description for creep shows a fairly good agreement with the real creep deformation process. Special attention requires the description of softening due to microstructural changes.


Sign in / Sign up

Export Citation Format

Share Document