scholarly journals INVESTMENT IN FLOOD PROTECTION MEASURES UNDER CLIMATE CHANGE UNCERTAINTY

2011 ◽  
Vol 02 (04) ◽  
pp. 321-339 ◽  
Author(s):  
KARIANNE DE BRUIN ◽  
ERIK ANSINK

Recent severe river flooding in Europe has triggered debates among scientists and policy-makers on future projections of flood frequency and the need for adaptive investments, such as flood protection measures. Because there exists uncertainty about the impact of climate change on flood risk, such investments require a careful analysis of expected benefits and costs. The objective of this paper is to show how climate change uncertainty affects the decision to invest in flood protection measures. We develop a model that incorporates flexible timing of investment decisions and scientific uncertainty on the extent of climate change impact. This model allows decision-makers to cope with the uncertain impact of climate change on the frequency and damage of river flood events and minimizes the risk of under- or over-investment. One of the innovative elements of our paper is that we explicitly distinguish between structural and non-structural flood protection measures. Our results show that the effects of uncertainty on the optimal initial investment depends on the cost structure of these measures which has several important implications for flood management policy.

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 273 ◽  
Author(s):  
Fatemeh Fadia Maghsood ◽  
Hamidreza Moradi ◽  
Ali Reza Massah Bavani ◽  
Mostafa Panahi ◽  
Ronny Berndtsson ◽  
...  

This study assessed the impact of climate change on flood frequency and flood source area at basin scale considering Coupled Model Intercomparison Project phase 5 General Circulation Models (CMIP5 GCMs) under two Representative Concentration Pathways (RCP) scenarios (2.6 and 8.5). For this purpose, the Soil and Water Assessment Tool (SWAT) hydrological model was calibrated and validated for the Talar River Basin in northern Iran. Four empirical approaches including the Sangal, Fill–Steiner, Fuller, and Slope-based methods were used to estimate the Instantaneous Peak Flow (IPF) on a daily basis. The calibrated SWAT model was run under the two RCP scenarios using a combination of twenty GCMs from CMIP5 for the near future (2020–40). To assess the impact of climate change on flood frequency pattern and to quantify the contribution of each subbasin on the total discharge from the Talar River Basin, Flood Frequency Index (FFI) and Subbasin Flood Source Area Index (SFSAI) were used. Results revealed that the projected climate change will likely lead to an average discharge decrease in January, February, and March for both RCPs and an increase in September and October for RCP 8.5. The maximum and minimum temperature will likely increase for all months in the near future. The annual precipitation could increase by more than 20% in the near future. This is likely to lead to an increase of IPF. The results can help managers and policy makers to better define mitigation and adaptation strategies for basins in similar climates.


Ecosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. e02021 ◽  
Author(s):  
James H. Thorne ◽  
Hyeyeong Choe ◽  
Ryan M. Boynton ◽  
Jacquelyn Bjorkman ◽  
Whitney Albright ◽  
...  

10.29007/1hrc ◽  
2018 ◽  
Author(s):  
Ngoc Duong Vo ◽  
Thanh Hao Nguyen ◽  
Huy Cong Vu ◽  
Philippe Gourbesville ◽  
Quang Binh Nguyen

Climate change is a complex problem and becoming the leading challenge for humankind in the 21st century. It will affect almost aspects of human well-being. Therefore, assessing climate change impacts on water resources and proposed solutions to respond to climate change is urgent and necessary. This study applied the SWAT model (Soil and Water Assessment Tool) and GIS (Geographic Information System) technique to simulate water flows due to the impact of climate change. The models were applied for Kon – Ha Thanh river catchment, located in Vietnam where is considered as one of the countries most affected by climate change. The SWAT model is calibrated and validated well using daily flow data with the Nash-Sutcliffe and correlation coefficients are 0.77 and 0.88, respectively. Two scenarios from Vietnamese government (RCP 4.5 and RCP 8.5) are used to analyze the variation of stream flow in three periods: 2016- 2035, 2045-2065, and 2080-2100. The results show that the flow in Kon – Ha Thanh rivers will vary complicatedly and severely under the impact of climate change. This flow may increase roughly 150.8% in flood season and reduce around 11.8% in dry season. Furthermore, the study also demonstrates that there are the changes in the flood dynamics as well as the hydrological shift of this region. This study presents an operational approach to integrate the results from the impacts of climate change to flood protection measures that would be useful in sustainable planning and devising resilience strategies.


2014 ◽  
Vol 15 (6) ◽  
pp. 2203-2218 ◽  
Author(s):  
Chuanhao Wu ◽  
Guoru Huang ◽  
Haijun Yu ◽  
Zhijing Chen ◽  
Jingguang Ma

Abstract One of the potential impacts of global warming is likely to be experienced through changes in flood frequency and magnitude, which poses a potential threat to the downstream reservoir flood control system. In this paper, the downscaling results of the multimodel dataset from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively) were coupled with the Variable Infiltration Capacity (VIC) model to evaluate the impact of climate change on the Feilaixia reservoir flood control in the Beijiang River basin for the first time. Four emissions scenarios [A1B and representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5, and RCP8.5] were chosen. Results indicate that annual distribution and interannual variability of temperature and precipitation are well simulated by the downscaling results of the CMIP3 and CMIP5 multimodel dataset. The VIC model, which performs reasonably well in simulating runoff processes with high model efficiency and low relative error, is suitable for the study area. Overall, annual maximum 1-day precipitation in 2020–50 would increase under all the scenarios (relative to the baseline period 1970–2000). However, the spatial distribution patterns of changes in projected extreme precipitation are uneven under different scenarios. Extreme precipitation is most closely associated with extreme floods in the study area. There is a gradual increase in extreme floods in 2020–50 under any of the different emission scenarios. The increases in 500-yr return period daily discharge of the Feilaixia reservoir have been found to be from 4.35% to 9.18% in 2020–50. The reservoir would be likely to undergo more flooding in 2020–50.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Sign in / Sign up

Export Citation Format

Share Document