Hydrogenated Amorphous Silicon/Crystalline Silicon Double Heterojunction X-Ray Sensor

1996 ◽  
Vol 35 (Part 1, No. 10) ◽  
pp. 5342-5345
Author(s):  
Guang-pu Wei ◽  
Wen-biao Wu ◽  
Takashi Kita ◽  
Hiroshi Nakayama ◽  
Taneo Nishino ◽  
...  
1989 ◽  
Vol 158 ◽  
Author(s):  
P. John ◽  
I.M. Odeh ◽  
A. Qayyum ◽  
J.I.B. Wilson

ABSTRACTHydrogenated amorphous silicon-carbon alloys, a-Si:C:H, have been deposited as thin films (d=0.1-0.5 micron) on crystalline silicon substrates from a capacitively coupled rf discharge in silane-propane mixtures. Variations in the stoichiometry of the films were achieved by altering the ratio of SiH4 to C3H8 flow rates at a sbstrate temperature in the range 240-260°C and total pressure between 30-70 mtorr. The silicon to carbon ratios were established by X-ray photoelectron spectroscopy, XPS, and the hydrogen content and distribution by infra-red spectroscopy.


RADIOISOTOPES ◽  
2015 ◽  
Vol 64 (12) ◽  
pp. 729-735 ◽  
Author(s):  
Xiaosong Xiaosong ◽  
Yang TIAN ◽  
Kenji SHIMAZOE ◽  
Takeshi FUJIWARA ◽  
Hiroyuki TAKAHASHI

2008 ◽  
Vol 1066 ◽  
Author(s):  
Kyung-Wook Shin ◽  
Mohammad R. Esmaeili-Rad ◽  
Andrei Sazonov ◽  
Arokia Nathan

ABSTRACTHydrogenated nanocrystalline silicon (nc-Si:H) has strong potential to replace the hydrogenated amorphous silicon (a-Si:H) in thin film transistors (TFTs) due to its compatibility with the current industrial a-Si:H processes, and its better threshold voltage stability [1]. In this paper, we present an experimental TFT array backplane for direct conversion X-ray detector, using inverted staggered bottom gate nc-Si:H TFT as switching element. The TFTs employed a nc-Si:H/a-Si:H bilayer as the channel layer and hydrogenated amorphous silicon nitride (a-SiNx) as the gate dielectric; both layers deposited by plasma enhanced chemical vapor deposition (PECVD) at 280°C. Each pixel consists of a switching TFT, a charge storage capacitor (Cpx), and a mushroom electrode which serves as the bottom contact for X-ray detector such as amorphous selenium photoconductor. The chemical composition of the a-SiNx was studied by Fourier transform infrared spectroscopy. Current-voltage measurements of the a-SiNx film demonstrate that a breakdown field of 4.3 MV/cm.. TFTs in the array exhibits a field effect mobility (μEF) of 0.15 cm2/V·s, a threshold voltage (VTh) of 5.71 V, and a subthreshold leakage current (Isub) of 10−10 A. The fabrication sequence and TFT characteristics will be discussed in details.


2011 ◽  
Vol 99 (20) ◽  
pp. 203503 ◽  
Author(s):  
Jan-Willem A. Schüttauf ◽  
Karine H. M. van der Werf ◽  
Inge M. Kielen ◽  
Wilfried G. J. H. M. van Sark ◽  
Jatindra K. Rath ◽  
...  

1999 ◽  
Vol 75 (21) ◽  
pp. 3282-3284 ◽  
Author(s):  
Kin Man Yu ◽  
W. Walukiewicz ◽  
S. Muto ◽  
H.-C. Jin ◽  
J. R. Abelson ◽  
...  

1996 ◽  
Vol 420 ◽  
Author(s):  
C. E. Nebel ◽  
M. Rother ◽  
C. Summonte ◽  
M. Heintze ◽  
M. Stutzmann

AbstractHall experiments on a series of microcrystalline, microcrystalline-amorphous, amorphous and crystalline silicon samples with varying defect densities are presented and discussed. Normal Hall effect signatures on boron and phosphorus doped hydrogenated amorphous silicon are detected. We interpret these results to be due to a small volume fraction of nanocrystalline Si, which falls below the detection limits of Raman experiments. Hydrogenated amorphous silicon, prepared under conditions far away from microcrystalline growth, shows the known double sign anomaly, Sign reversals in c-Si, where the disorder is increased by Si implantation up to very high levels, could not be detected.


Sign in / Sign up

Export Citation Format

Share Document