Preferred Orientations of NiO Films Prepared by Plasma-Enhanced Metalorganic Chemical Vapor Deposition

1996 ◽  
Vol 35 (Part 2, No. 3A) ◽  
pp. L328-L330 ◽  
Author(s):  
Eiji Fujii ◽  
Atsushi Tomozawa ◽  
Hideo Torii ◽  
Ryoichi Takayama
1999 ◽  
Vol 14 (3) ◽  
pp. 1132-1136 ◽  
Author(s):  
Anchuan Wang ◽  
John A. Belot ◽  
Tobin J. Marks

High-quality epitaxial or highly textured NiO thin films can be grown at temperatures of 400–750°C by low-pressure metalorganic chemical vapor deposition (MOCVD) on MgO, SrTiO3, C-cut sapphire, as well as on single crystal and highly textured Ni (200) metal substrates using Ni(dpm)2 (dpm – dipivaloylmethanate) as the volatile precursor and O2 or H2O as the oxidizer/protonolyzer. X-ray diffraction (XRD), scanning electron microscopy/energy dispersive detection (SEM/EDX), and atomic force microscopy (AFM) confirm that the O2-derived NiO films are smooth and that the quality of the epitaxy can be improved by decreasing the growth temperature and/or the precursor flow rate. However, low growth temperatures (400–500 °C) lead to rougher surfaces and carbon contamination. The H2O-derived NiO films, which can be obtained only at relatively high temperatures (650–750 °C), exhibit slightly broader ω scan full width half-maximum (FWHM) values and rougher surfaces but no carbon contamination. Using H2O as the oxidizer/protonolyzer, smooth and highly textured NiO (111) films can be grown on easily oxidized single crystal and highly textured Ni (200) metal substrates, which is impossible when O2 is the oxidizer. The textural quality of these films depends on both the quality of the metal substrates and the gaseous precursor flow rate.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline E. Reilly ◽  
Stacia Keller ◽  
Shuji Nakamura ◽  
Steven P. DenBaars

AbstractUsing one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In,Al,Ga)N. This III-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengths in more recent years. With a bandgap of about 0.7 eV, InN can emit light in the near infrared, potentially overlapping with the part of the electromagnetic spectrum currently dominated by III-As and III-P technology. As has been the case in these other III–V material systems, nanostructures such as quantum dots and quantum dashes provide additional benefits towards optoelectronic devices. In the case of InN, these nanostructures have been in the development stage for some time, with more recent developments allowing for InN quantum dots and dashes to be incorporated into larger device structures. This review will detail the current state of metalorganic chemical vapor deposition of InN nanostructures, focusing on how precursor choices, crystallographic orientation, and other growth parameters affect the deposition. The optical properties of InN nanostructures will also be assessed, with an eye towards the fabrication of optoelectronic devices such as light-emitting diodes, laser diodes, and photodetectors.


Sign in / Sign up

Export Citation Format

Share Document