Preparation of BaTiO3Films on Si Substrate with MgO Buffer Layer by RF Magnetron Sputtering

2008 ◽  
Vol 47 (9) ◽  
pp. 7475-7479 ◽  
Author(s):  
Wen-Ching Shih ◽  
Yuan-Sung Liang ◽  
Mu-Shiang Wu
2010 ◽  
Vol 24 (31) ◽  
pp. 3033-3040 ◽  
Author(s):  
C. W. CHEN ◽  
C. H. TSENG ◽  
C. Y. HSU ◽  
C. P. CHOU ◽  
K. H. HOU

Al 2 O 3-doped zinc oxide (in AZO, the Al 2 O 3 contents are approximately 2 wt.%) films have been grown by radio frequency (RF) magnetron sputtering at room temperature under varied sputtering pressures ranging from 3.5–15 mTorr. The electrical resistivity of AZO films is about 2.22×10-3 Ωcm (sheet resistance ~ 89 Ω/square for a thickness ~ 250 nm), and the visible range transmittance is about 80% at the argon sputtering pressure of 15 mTorr and a RF power of 100 W. This study analyzes the structural, morphological, electrical and optical properties of AZO thin films grown on soda-lime glass substrate with 2, 5, and 10 nm thick Al buffer layers (and SiO 2 buffer). For the films deposited on the 2 nm thick Al buffer layer, we obtained a c-axis-oriented AZO/ Al thin film on glass with the XRD full-width at half maximum (FWHM) of 0.31 and root mean square (RMS) surface roughness of about 3.22 nm. The lowest resistivity of 9.46×10-4 Ωcm (sheet resistance ~ 37.87 Ω/square for a thickness ~ 250 nm) and a high transmittance (80%) were obtained by applying a 2 nm thick Al buffer layer. In contrast, the resistivity was slightly increased by applying the SiO 2 buffer layer.


2005 ◽  
Vol 486-487 ◽  
pp. 626-629 ◽  
Author(s):  
Chul Ho Park ◽  
Young Gook Son

The MFS and MFIS structures were prepared on the Si and PbO/Si substrate by the r.f. magnetron sputtering method. When the PbO buffer layer was inserted between the PZT thin film and Si substrate, the crystallization of the PZT thin films was considerably improved, and the processing temperature was lowered. Compared with the MFS structure, memory window values of the MFIS structure with the buffer layer were considerably improved. In particular, in the MFIS structure, the maximum value of the memory window is 2.0 V under the applied voltage of 9V for Pt/PZT (200 nm, 400ı)/PbO (80 nm)/Si structures with the PbO buffer layer deposited at the substrate temperature of 300ı.


2004 ◽  
Vol 264 (1-3) ◽  
pp. 110-115 ◽  
Author(s):  
Sang-Hun Jeong ◽  
Il-Soo Kim ◽  
Sang-Sub Kim ◽  
Jae-Keun Kim ◽  
Byung-Teak Lee

2018 ◽  
Author(s):  
K. Tatejima ◽  
T. Nagata ◽  
K. Ishibashi ◽  
K. Takahashi ◽  
S. Suzuki ◽  
...  

1996 ◽  
Vol 433 ◽  
Author(s):  
S.H. Paek ◽  
C.S. Park ◽  
J.H. Won ◽  
K.S. Lee

AbstractThe application of high dielectric (Ba, Sr)TiO3 [BST] thin films for Metal-Insulator- Semiconductor(MIS) capacitors was investigated. BST thin films were deposited on p-Si(100) substrates by the RF magnetron sputtering with temperature range of 500–600 °C. We examined the characteristics of MIS capacitor with various oxygen pressure, substrate temperature and (Ba+Sr)/Ti ratio. The dielectric properties of MIS capacitors consisting of AI/BST/SiO2/Si sandwich structure were measured for various conditions. The charge state densities of the MIS capacitors were determined by high frequency (1 MHz) C-V measurement. Also, current-voltage characteristics of the MIS capacitor were investigated. In order to reduce the leakage current in MIS capacitor, high quality SiO2 layer was grown on bare p-Si substrate by thermal oxidation. By applying SiO2 layer between BST thin films and Si substrate, low leakage current of 10−10 order was observed. Futhermore, the leakage current showed the dependence on the oxygen concentration in plasma gas and the (Ba+Sr)/Ti ratio. Also, the BST MIS structure showed relatively high capacitance even though it is the combination of high-dielectric BST thin films and SiO2 layer. By C-V measurement, the polarity of effective oxide charge changed with the oxygen concentration in plasma gas and (Ba+Sr)/Ti ratio of sputtering target.


2014 ◽  
Vol 989-994 ◽  
pp. 65-68
Author(s):  
Xiao Jing Wang

ZnO: Al film was deposited on TPT substrate with SiO2 buffer layer by RF magnetron sputtering. The obtained film had a hexagonal structure and highly (002) preferred orientation. The lattice constant distortion of the film with buffer layer was decreased and the compressive stress was 0.779GPa. The carrier concentratio reached to 3.15×10+20/cm3. The resistivity of ZAO film with SiO2 buffer layer was about 9.2×10-3 Ω·cm and the average transmittance was over 72% in the range of 380~900nm.


Sign in / Sign up

Export Citation Format

Share Document