Gallium Nitride Film Growth Using a Plasma Based Migration Enhanced Afterglow Chemical Vapor Deposition System

2012 ◽  
Vol 51 (1) ◽  
pp. 01AF02 ◽  
Author(s):  
K. Scott A. Butcher ◽  
Brad W. Kemp ◽  
Ilian B. Hristov ◽  
Penka Terziyska ◽  
Peter W. Binsted ◽  
...  
2012 ◽  
Vol 51 (1S) ◽  
pp. 01AF02 ◽  
Author(s):  
K. Scott A. Butcher ◽  
Brad W. Kemp ◽  
Ilian B. Hristov ◽  
Penka Terziyska ◽  
Peter W. Binsted ◽  
...  

2007 ◽  
Vol 4 (7) ◽  
pp. 2285-2288 ◽  
Author(s):  
M. Wintrebert-Fouquet ◽  
K. S. A. Butcher ◽  
P. P.-T. Chen ◽  
R. Wuhrer

2021 ◽  
Vol 15 (6) ◽  
pp. 2170024
Author(s):  
Yuxuan Zhang ◽  
Zhaoying Chen ◽  
Kaitian Zhang ◽  
Zixuan Feng ◽  
Hongping Zhao

2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


2021 ◽  
Author(s):  
Omar D. Jumaah ◽  
Yogesh Jaluria

Abstract Chemical vapor deposition (CVD) is a widely used manufacturing process for obtaining thin films of materials like silicon, silicon carbide, graphene and gallium nitride that are employed in the fabrication of electronic and optical devices. Gallium nitride (GaN) thin films are attractive materials for manufacturing optoelectronic device applications due to their wide band gap and superb optoelectronic performance. The reliability and durability of the devices depend on the quality of the thin films. The metal-organic chemical vapor deposition (MOCVD) process is a common technique used to fabricate high-quality GaN thin films. The deposition rate and uniformity of thin films are determined by the thermal transport processes and chemical reactions occurring in the reactor, and are manipulated by controlling the operating conditions and the reactor geometrical configuration. In this study, the epitaxial growth of GaN thin films on sapphire (AL2O3) substrates is carried out in two commercial MOCVD systems. This paper focuses on the composition of the precursor and the carrier gases, since earlier studies have shown the importance of precursor composition. The results show that the flow rate of trimethylgallium (TMG), which is the main ingredient in the process, has a significant effect on the deposition rate and uniformity of the films. Also the carrier gas plays an important role in deposition rate and uniformity. Thus, the use of an appropriate mixture of hydrogen and nitrogen as the carrier gas can improve the deposition rate and quality of GaN thin films.


2007 ◽  
Vol 22 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Y. Morikawa ◽  
M. Hirai ◽  
A. Ohi ◽  
M. Kusaka ◽  
M. Iwami

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface


Sign in / Sign up

Export Citation Format

Share Document