Hydrogen Concentration Analysis in Pecvd and Rtcvd Silicon Nitride Thin Films and It's Impact on Device Performance

2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.

2015 ◽  
Vol 815 ◽  
pp. 18-21
Author(s):  
Tao Huang ◽  
Lin Chen ◽  
Qing Qing Sun ◽  
Peng Zhou ◽  
David Wei Zhang

Graphene is a novel two dimensional material with exceptional properties. Chemical vapor deposition of graphene on metal substrates is widely used to prepare high quality graphene film. However, the graphene films need to be transferred to oxide substrates for device applications. A chemical vapor deposition approach for direct growth of graphene films on zinc oxide was demonstrated in the present investigation. Raman spectra were used to characterize the grown graphene films. The impact of the growth temperature, time and gas flow ratio on the layer number and crystallite size of graphene was investigated.


1999 ◽  
Vol 560 ◽  
Author(s):  
Zingway Pei ◽  
Y.J. Chung ◽  
H.L. Hsiao ◽  
H.L. Hwang

ABSTRACTThe intense UV-visible-IR adjustable light emissions from silicon-rich oxynitride thin films without any thermal annealing were observed at room temperature under a 325 nm He-Cd laser excitation. The silicon-rich oxynitride thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) with the mixture of 5% Ar diluted silane and nitrous oxide gases. The strong naked-eye recognizable photoluminescence (blue-white-red) could be adjusted by changing the process gas flow ratio τ =([SiH4]/[N20]). To the best of our knowledge, intense and adjustable UV-blue light emissions in the as-deposited thin films are first reported in this work. The Fourier Transform infrared (FTIR) spectroscopy was applied to investigate the microstructure-bonding configurations, in which silicon polysilane related bonding at 830-890 cm' present that silicon complex, exists along with the Si-O-Si bonding. X-ray photoelectron spectroscopy was used to investigate the binding configuration, the binding energy of Si 2p appearing at 99.3 eV was indicative of formation of the silicon clusters. As a consequence, we suppose that the visible-IR lights emissions might possible be strongly related to silicon clusters formation in the films and the intense UV emissions might come from the oxygen-related defects.


2018 ◽  
Vol 18 (11) ◽  
pp. 7590-7594 ◽  
Author(s):  
Peng Gu ◽  
Jinling Yu ◽  
Xiaolin Zeng ◽  
Shuying Cheng ◽  
Yunfeng Lai ◽  
...  

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744101 ◽  
Author(s):  
Bitao Chen ◽  
Yingke Zhang ◽  
Qiuping Ouyang ◽  
Fei Chen ◽  
Xinghua Zhan ◽  
...  

SiNx thin film has been widely used in crystalline silicon solar cell production because of the good anti-reflection and passivation effect. We can effectively optimize the cells performance by plasma-enhanced chemical vapor deposition (PECVD) method to change deposition conditions such as temperature, gas flow ratio, etc. In this paper, we deposit a new layer of SiNx thin film on the basis of double-layers process. By changing the process parameters, the compactness of thin films is improved effectively. The NH3passivation technology is augmented in a creative way, which improves the minority carrier lifetime. In sight of this, a significant increase is generated in the photoelectric performance of crystalline silicon solar cell.


Author(s):  
Ding-Yuan Chen ◽  
Axel R Persson ◽  
Kai Hsin Wen ◽  
Daniel Sommer ◽  
Jan Gruenenpuett ◽  
...  

Abstract The impact on the performance of GaN HEMTs of in situ ammonia (NH3) pre-treatment prior to the deposition of silicon nitride (SiN) passivation with low-pressure chemical vapor deposition is investigated. Three different NH3 pre-treatment durations (0, 3, and 10 minutes) were compared in terms of interface properties and device performance. A reduction of oxygen at the interface between SiN and epi-structure is detected by Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy measurements in the sample subjected to 10 minutes of pre-treatment. The samples subjected to NH3 pre-treatment show a reduced surface-related current dispersion of 9 % (compared to 16% for the untreated sample), which is attributed to the reduction of oxygen at the SiN/epi interface. Furthermore, NH3 pre-treatment for 10 minutes significantly improves the current dispersion uniformity from 14.5 % to 1.9 %. The reduced trapping effects result in a high output power of 3.4 W/mm at 3 GHz (compared to 2.6 W/mm for the untreated sample). These results demonstrate that the in situ NH3 pre-treatment before low-pressure chemical vapor deposition of SiN passivation is critical and can effectively improves the large-signal microwave performance of GaN HEMTs.


1981 ◽  
Vol 39 (4) ◽  
pp. 354-356 ◽  
Author(s):  
Mitsumasa Suzuki ◽  
Hiroshi Onodera ◽  
Takeshi Anayama ◽  
Gin‐ichiro Oya ◽  
Yutaka Onodera

Sign in / Sign up

Export Citation Format

Share Document