scholarly journals Transport of mafic magma through the crust and sedimentary basins: Jameson Land, East Greenland

2021 ◽  
pp. jgs2021-043
Author(s):  
Christian Haug Eide ◽  
Nick Schofield ◽  
John Howell ◽  
Dougal A Jerram

Igneous sheet-complexes transport magma through the crust, but most studies have focused on single segments of the magma-transport-system or have low resolution. In the Jameson Land Basin in East Greenland, reflection-seismic data and extensive outcrops give unparalleled constraints on mafic intrusions down to 15 km. This dataset shows how sill-complexes develop and how magma is transported from the mantle through sedimentary basins. The feeder zone of the sill-complex is a narrow zone below basin, where a magmatic underplate body impinges on thinned crust. Magma was transported through the crystalline crust through dykes. Seismic data and published geochemistry indicate magma was supplied from a magmatic underplate, without perceptible storage in crustal magma-chambers and crustal assimilation. As magma entered the sedimentary basin, it formed distributed, bowl-shaped sill-complexes throughout the basin. Large magma volumes in sills (4-20 times larger than the Skaergaard Intrusion), and few dykes highlight the importance of sills in crustal magma-transport. On scales smaller than 0.2 km, host-rock lithology, and particularly mudstone tensile strength-anisotropy, controls sill-architecture in the upper 10km of the basin, whereas sills are bowl-shaped below the brittle-ductile transition zone. On scales of kilometres and towards basin margins, tectonic stresses and lateral lithological changes dominate architecture of sills.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5670470

2020 ◽  
Vol 177 (5) ◽  
pp. 965-980
Author(s):  
Robert J. Stern ◽  
Kamal Ali ◽  
Paul D. Asimow ◽  
Mokhles K. Azer ◽  
Matthew I. Leybourne ◽  
...  

We analysed gabbroic and dioritic rocks from the Atud igneous complex in the Eastern Desert of Egypt to understand better the formation of juvenile continental crust of the Arabian–Nubian Shield. Our results show that the rocks are the same age (U–Pb zircon ages of 694.5 ± 2.1 Ma for two diorites and 695.3 ± 3.4 Ma for one gabbronorite). These are partial melts of the mantle and related fractionates (εNd690 = +4.2 to +7.3, 87Sr/86Sri = 0.70246–0.70268, zircon δ18O ∼ +5‰). Trace element patterns indicate that Atud magmas formed above a subduction zone as part of a large and long-lived (c. 60 myr) convergent margin. Atud complex igneous rocks belong to a larger metagabbro–epidiorite–diorite complex that formed as a deep crustal mush into which new pulses of mafic magma were periodically emplaced, incorporated and evolved. The petrological evolution can be explained by fractional crystallization of mafic magma plus variable plagioclase accumulation in a mid- to lower crustal MASH zone. The Atud igneous complex shows that mantle partial melting and fractional crystallization and plagioclase accumulation were important for Cryogenian crust formation in this part of the Arabian–Nubian Shield.Supplementary material: Analytical methods and data, calculated equilibrium mineral temperatures, results of petrogenetic modeling, and cathodluminesence images of zircons can be found at https://doi.org/10.6084/m9.figshare.c.4958822


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-109
Author(s):  
Paulo Castellan ◽  
Gustavo Viegas ◽  
Frederico M. Faleiros

Fabrics of the East Pernambuco shear zone (EPSZ) were studied via microstructural analysis, mineral chemistry and isochemical phase diagram modelling to constrain the pressure and temperature conditions of deformation during shearing. Granitic mylonites show fractured feldspar porphyroclasts embedded in a fine-grained, recrystallized quartzo-feldspathic matrix. These mylonites grade laterally into banded ultramylonites characterized by stretched feldspar clasts alternated with recrystallized quartz bands. Fractures in these ultramylonites are filled by phyllosilicates. The mineral chemistry of the feldspars points to systematic changes between porphyroclasts, grains within fractures and fine-grained mixtures. Quartz crystallographic fabrics in the mylonites suggest activation of prism slip, while the ultramylonites show the activation of both rhomb and basal slip systems. Thermodynamic modelling suggests that the mylonites were formed at 4.75 ± 0.25 kbar and 526 ± 9°C, while the ultramylonites yield conditions of 5.9 ± 1 kbar and 437 ± 17°C. These observations suggest that the EPSZ records a heterogeneous path of strain accommodation, marked by decreasing temperature from its western sector to its eastern termination. The differences in metamorphic conditions are consistent with a transitional, brittle–ductile strain regime. Such characteristics indicate that the EPSZ is a Neoproterozoic shear belt nucleated and heterogeneously exhumed at the brittle–ductile transition, possibly in an intracontinental setting.Supplementary Material: EPMA analysis of feldspars in Caruaru and Gravatá domains and T-X(O2) pseudosections are available at https://doi.org/10.6084/m9.figshare.c.5125957


2020 ◽  
Vol 26 (4) ◽  
pp. 511-524
Author(s):  
Christopher A.-L. Jackson ◽  
Craig Magee ◽  
Carl Jacquemyn

Large volumes of hydrocarbons reside in volcanically influenced sedimentary basins. Despite having a good conceptual understanding of how magmatism impacts the petroleum systems of such basins, we still lack detailed case studies documenting precisely how intrusive magmatism influences, for example, trap development and reservoir quality. Here we combine 3D seismic reflection, borehole, petrographical and palaeothermometric data to document the geology of borehole 5/22-1, NE Irish Rockall Basin, offshore western Ireland. This borehole (Errigal) tested a four-way dip closure that formed to accommodate emplacement of a Paleocene–Eocene igneous sill-complex during continental break-up in the North Atlantic. Two water-bearing turbidite-sandstone-bearing intervals occur in the Upper Paleocene; the lowermost contains thin (c. 5 m), quartzose-feldspathic sandstones of good reservoir quality, whereas the upper is dominated by poor-quality volcaniclastic sandstones. Palaeothermometric data provide evidence of anomalously high temperatures in the Paleocene–Eocene succession, suggesting the poor reservoir quality within the target interval is likely to reflect sill-induced heating, fluid flow, and related diagenesis. The poor reservoir quality is also probably the result of the primary composition of the reservoir, which is dominated by volcanic grains and related clays derived from an igneous-rock-dominated, sediment source area. Errigal appeared to fail due to a lack of hydrocarbon charge: that is, the low bulk permeability of the heavily intruded Cretaceous mudstone succession may have impeded the vertical migration of sub-Cretaceous-sourced hydrocarbons into supra-Cretaceous reservoirs. Break-up-related magmatism did, however, drive the formation of a large structural closure, with data from Errigal at least proving high-quality, Upper Paleocene deep-water reservoirs. Future exploration targets in the NE Irish Rockall Basin include: (i) stratigraphically trapped Paleocene–Eocene deep-water sandstones that onlap the flanks of intrusion-induced forced folds; (ii) structurally trapped, intra-Cretaceous, deep-water sandstones incorporated within intrusion-induced forced folds; and (iii) more conventional, Mesozoic fault-block traps underlying the heavily intruded Cretaceous succession (e.g. Dooish). Similar plays may exist on other continental margins influenced by break-up magmatism.Supplementary material: Borehole-related reports, and litho- and composite logs are available at https://doi.org/10.6084/m9.figshare.c.4803267


2021 ◽  
pp. jgs2021-042
Author(s):  
Grace I.E. Cosgrove ◽  
Luca Colombera ◽  
Nigel P. Mountney

Despite a well-documented record of preserved aeolian successions from sedimentary basins characterised by widely variable subsidence rates, the relationship between aeolian architecture and subsidence-driven accommodation generation remains poorly constrained and largely unquantified. Basin subsidence as a control on aeolian sedimentary architecture is examined through analysis of 55 ancient case-studies categorised into settings of ‘slow’ (1–10 m/Myr), ‘moderate’ (10–100 m/Myr) and ‘rapid’ (>100 m/Myr) time-averaged subsidence rates. In rapidly subsiding basins, aeolian successions are thicker and associated with: (1) thicker and more laterally extensive dune-sets with increased foreset preservation; (2) greater proportions of wet-type interdunes and surface stabilization features; (3) more extensive interdune migration surfaces, bounding sets that climb more steeply. In slowly subsiding basins, aeolian successions are thinner, and associated with a greater proportion of (1) aeolian sandsheets; (2) supersurfaces indicative of deflation and bypass. Rapid subsidence promotes: (1) steeper bedform climb, resulting in increased preservation of the original dune foreset deposits; (2) relatively elevated water-tables, leading to sequestration of deposits beneath the erosional-baseline and encouraging development of stabilizing agents; both factors promote long-term preservation. Slow subsidence results in (1) lower angles-of-climb, associated with increased truncation of the original dune forms; (2) greater post-depositional reworking, where sediment is exposed above the erosional-baseline for protracted time. Quantitative analysis of sedimentary stratal architecture in relation to rates of basin subsidence helps demonstrate the mechanisms by which sedimentary successions are accumulated and preserved into the long-term stratigraphic record.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5515695


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


Author(s):  
Troels F.D. Nielsen ◽  
Henriette Hansen ◽  
C. Kent Brooks ◽  
Charles E. Lesher

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Nielsen, T. F., Hansen, H., Brooks, C. K., & Lesher, C. E. (2001). The East Greenland continental margin, the Prinsen af Wales Bjerge and new Skaergaard intrusion initiatives. Geology of Greenland Survey Bulletin, 189, 83-98. https://doi.org/10.34194/ggub.v189.5162 _______________ The rifted volcanic margin of East Greenland has remained a major area for field studies and the development of models for the dynamics of plume-related continental break-up since the start of the Danish Lithosphere Centre (DLC) in 1994. The studies cover a range of disciplines and geological processes from the early development of pre-break-up basin formation and sedimentation over the main phase of basaltic magmatism to the late stages of alkaline magmatism and structural re-equilibration. The East Greenland field activities in the summer of 2000, collectively referred to as EG 2000, were facilitated by a logistic platform provided by support from Statens Naturvidenskabelige Forskningsråd (SNF, the Danish Natural Science Research Council) and the Bureau of Minerals and Petroleum (BMP) in Nuuk, Greenland for the retrieval of 6 km of drillcore from the Skaergaard intrusion. During 1989 and 1990 mineral exploration had resulted in drilling of more than 15 km of core through the classic layered gabbros. The logistic platform also provided support for DLC and Geological Survey of Denmark and Greenland (GEUS) field work and projects throughout the Kangerlussuaq region and on the Blosseville Kyst (Fig. 1), as well as mineral exploration and petroleum company activities.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Lourenildo W.B. Leite ◽  
J. Mann ◽  
Wildney W.S. Vieira

ABSTRACT. The present case study results from a consistent processing and imaging of marine seismic data from a set collected over sedimentary basins of the East Brazilian Atlantic. Our general aim is... RESUMO. O presente artigo resulta de um processamento e imageamento consistentes de dados sísmicos marinhos de levantamento realizado em bacias sedimentares do Atlântico do Nordeste...


Sign in / Sign up

Export Citation Format

Share Document