A new geological map and review of the Middle Devonian rocks of Westray and Papa Westray, Orkney, Scotland

2021 ◽  
pp. sjg2020-030
Author(s):  
David Leather

The Middle Devonian lacustrine sediments of Orkney, off the northeast Scottish mainland, are composed largely of the Lower and Upper Stromness Formations and overlying Rousay Formation. These three formations have been subdivided and defined by vertebrate biostratigraphic biozones with recent division of the Rousay Formation into three further units based on characteristic fish fossils. The division of the Rousay Formation has enabled a map to be constructed of the solid geology of the island of Westray, Orkney, based on fish identification, detailed logging of sedimentary cycles throughout the Rousay succession, parameters of divisional boundaries, and a survey of faults marking sinistral transtensional movement parallel to the Great Glen Fault. Post-Carboniferous shortening and basin inversion led to uplift, folding and reactivation of normal faults as reverse faults, to form a positive strike-slip flower structure in Westray. A suite of Permian igneous dykes intruded across Orkney include three minor offshoots in Westray. The resulting map is the first to make use of biostratigraphic units within the Rousay Flagstone which are now regarded as Members.

2016 ◽  
Vol 153 (5-6) ◽  
pp. 866-886 ◽  
Author(s):  
FUSHENG YU ◽  
HEMIN KOYI

AbstractModelling results and seismic interpretation illustrate that the Cenozoic evolution of the Bohai Bay Basin (BBB) can be divided into different stages. A transtensional phase during Paleocene – early Oligocene time created NE-trending strike-slip faults and E–W-trending normal faults which were driven roughly by N–S–extension, making an angle of 25° with the strike-slip faults. Seismic data interpretation yields evidence that inversion phases occurred within the NE Xialiaohe Depression of the greater Bohai Bay Basin. This inversion phase is attributed to rotation and partial inversion that occurred during late Oligocene time, leading to formation of inversion structures along the NE part of Tanlu Fault. This episode is attributed to an anticlockwise rotation of the eastern part of the BBB driven by the convergence between the Pacific and Eurasian plates. The tectonic scenario described was simulated in scaled analogue models, which were extended by pulling two basement plates away from each other. Partial inversion was simulated by rotation of one of the plates relative to the other. Model results show many of the features observed in the BBB. Our model results are used to argue that, unlike the two-episode extension and whole-basin inversion models previously proposed for the BBB, a single N–S-aligned extension followed by anticlockwise rotation accounts for the Cenozoic evolution of the BBB and produces some of the structural complexities observed in the basin.


Author(s):  
Kristian Svennevig ◽  
Peter Alsen ◽  
Pierpaolo Guarnieri ◽  
Jussi Hovikoski ◽  
Bodil Wesenberg Lauridsen ◽  
...  

The geological map sheet of Kilen in 1:100 000 scale covers the south-eastern part of the Carboniferous– Palaeogene Wandel Sea Basin in eastern North Greenland. The map area is dominated by the Flade Isblink ice cap, which separates several minor isolated landmasses. On the semi-nunatak of Kilen, the map is mainly based on oblique photogrammetry and stratigraphical field work while in Erik S. Henius Land, Nordostrundingen and northern Amdrup Land the map is based on field data collected during previous, 1:500 000 scale regional mapping. Twenty-one Palaeozoic–Mesozoic mappable units were identified on Kilen, while the surrounding areas comprise the Late Cretaceous Nakkehoved Formation to the north-east and the Late Carboniferous Foldedal Formation to the south-west. On Kilen, the description of Jurassic–Cretaceous units follows a recently published lithostratigraphy. The Upper Palaeozoic–lowermost Cretaceous strata comprise seven formations and an informal mélange unit. The overlying Lower–Upper Cretaceous succession comprises the Galadriel Fjeld and Sølverbæk Formations, which are subdivided into six and five units, respectively. In addition, the Quaternary Ymer Formation was mapped on south-east Kilen. The Upper Palaeozoic to Mesozoic strata of Kilen are faulted and folded. Several post-Coniacian NNW–SSE-trending normal faults are identified and found to be passively folded by a later N–S compressional event. A prominent subhorizontal fault, the Central Detachment, separates two thrust sheets, the Kilen Thrust Sheet in the footwall and the Hondal Elv Thrust Sheet in the hanging wall. The style of deformation and the structures found on Kilen are caused by compressional tectonics resulting in post-extensional, presumably Early Eocene, folding and thrusting and basin inversion. The structural history of the surrounding areas and their relation to Kilen await further studies.


Author(s):  
Kristian Svennevig ◽  
Peter Alsen ◽  
Pierpaolo Guarnieri ◽  
Jussi Hovikoski ◽  
Bodil Wesenberg Lauridsen ◽  
...  

NOTE: This Map Description was published in a former series of GEUS Bulletin. Please use the original series name when citing this series, for example: Svennevig, K., Alsen, P., Guarnieri, P., Hovikoski, J., Wesenberg Lauridsen, B., Krarup Pedersen, G., Nøhr-Hansen, H., & Sheldon, E. (2018). Descriptive text to the Geological map of Greenland, 1:100 000, Kilen 81 Ø.1 Syd. Geological Survey of Denmark and Greenland Map Series 8, 1-29. https://doi.org/10.34194/geusm.v8.4526 _______________ The geological map sheet of Kilen in 1:100 000 scale covers the south-eastern part of the Carboniferous–Palaeogene Wandel Sea Basin in eastern North Greenland. The map area is dominated by the Flade Isblink ice cap, which separates several minor isolated landmasses. On the semi-nunatak of Kilen, the map is mainly based on oblique photogrammetry and stratigraphical field work while in Erik S. Henius Land, Nordostrundingen and northern Amdrup Land the map is based on field data collected during previous, 1:500 000 scale regional mapping. Twenty-one Palaeozoic–Mesozoic mappable units were identified on Kilen, while the surrounding areas comprise the Late Cretaceous Nakkehoved Formation to the north-east and the Late Carboniferous Foldedal Formation to the south-west. On Kilen, the description of Jurassic–Cretaceous units follows a recently published lithostratigraphy. The Upper Palaeozoic–lowermost Cretaceous strata comprise seven formations and an informal mélange unit. The overlying Lower–Upper Cretaceous succession comprises the Galadriel Fjeld and Sølverbæk Formations, which are subdivided into six and five units, respectively. In addition, the Quaternary Ymer Formation was mapped on south-east Kilen. The Upper Palaeozoic to Mesozoic strata of Kilen are faulted and folded. Several post-Coniacian NNW–SSE-trending normal faults are identified and found to be passively folded by a later N–S compressional event. A prominent subhorizontal fault, the Central Detachment, separates two thrust sheets, the Kilen Thrust Sheet in the footwall and the Hondal Elv Thrust Sheet in the hanging wall. The style of deformation and the structures found on Kilen are caused by compressional tectonics resulting in post-extensional, presumably Early Eocene, folding and thrusting and basin inversion. The structural history of the surrounding areas and their relation to Kilen await further studies.


2004 ◽  
Vol 83 (2) ◽  
pp. 49-65
Author(s):  
T.N. Debacker ◽  
A. Herbosch ◽  
J. Verniers ◽  
M. Sintubin

AbstractThe literature suggests that the Asquempont fault, a supposedly important reverse fault forming the limit between the Lower to lower Middle Cambrian and the Ordovician in the Sennette valley, is poorly understood. Nevertheless, this fault is commonly equated with a pronounced NW-SE-trending aeromagnetic lineament, the Asquempont lineament, and both the geometry of the Asquempont lineament and the supposed reverse movement of the Asquempont fault are used to develop large-scale tectonic models of the Brabant Massif. New outcrop observations in the Asquempont area, the “type locality” of the Asquempont fault, in combination with outcrop and borehole data from surrounding areas, show that the Asquempont fault is not an important reverse fault, but instead represents a pre-cleavage, low-angle extensional detachment. This detachment formed between the Caradoc and the timing of folding and cleavage development and is not related to the aeromagnetic Asquempont lineament. The Asquempont area also contains several relatively important, steep, post-cleavage normal faults. Apparently, these occur in a WNW-ESE-trending zone between Asquempont and Fauquez, extending westward over Quenast towards Bierghes. This zone coincides with the eastern part of the WNW-ESE-trending Nieuwpoort-Asquempont fault zone, for which, on the basis of indirect observations, previously a strike-slip movement has been proposed. Our outcrop observations question this presumed strike-slip movement. The Asquempont fault may be related to the progressive unroofing of the core of the Brabant Massif from the Silurian onwards. Possibly, other low-angle extensional detachments similar to the Asquempont fault occur in other parts of the massif. Possible candidates are the paraconformity-like contacts depicted on the most recent geological map of the Brabant Massif.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Myo Thant ◽  
Subagyo Pramumijoyo ◽  
Heru Hendrayana ◽  
Hiroshi Kawase ◽  
Agus Darmawan Adi

Maximum magnitudes of earthquake potentials are estimated for Yogyakarta depression area by using the faultlength and earthquake magnitude relations for fault specific seismic sources. For estimation of maximum earthquake magnitude, the fault specific seismic sources are modeled as 18 normal faults and 6 strike-slip faults sources referring the geological map of McDonald, 1984 and Rihardjo et al., 1995. For the present area the subduction zone earthquakes are expected to happen in the offshore region regarding the study on the seismicity of the region and the focal mechanisms of the past earthquakes. So three area sources are also assumed for this region and the possible maximum earthquake magnitudes for these sources are determined by probabilistic approaches.


2004 ◽  
Vol 83 (1) ◽  
pp. 49-66 ◽  
Author(s):  
T.N. Debacker ◽  
A. Herbosch ◽  
J. Verbiers ◽  
M. Sintubin

AbstractThe literature suggests that the Asquempont fault, a supposedly important reverse fault forming the limit between the Lower to lower Middle Cambrian and the Ordovician in the Sennette valley, is poorly understood. Nevertheless, this fault is commonly equated with a pronounced NW-SE-trending aeromagnetic lineament, the Asquempont lineament, and both the geometry of the Asquempont lineament and the supposed reverse movement of the Asquempont fault are used to develop large-scale tectonic models of the Brabant Massif. New outcrop observations in the Asquempont area, the “type locality” of the Asquempont fault, in combination with outcrop and borehole data from surrounding areas, show that the Asquempont fault is not an important reverse fault, but instead represents a pre-cleavage, low-angle extensional detachment. This detachment formed between the Caradoc and the timing of folding and cleavage development and is not related to the aeromagnetic Asquempont lineament. The Asquempont area also contains several relatively important, steep, post-cleavage normal faults. Apparently, these occur in a WNW-ESE-trending zone between Asquempont and Fauquez, extending westward over Quenast towards Bierghes. This zone coincides with the eastern part of the WNW-ESE-trending Nieuwpoort-Asquempont fault zone, for which, on the basis of indirect observations, previously a strike-slip movement has been proposed. Our outcrop observations question this presumed strike-slip movement. The Asquempont fault may be related to the progressive unroofing of the core of the Brabant Massif from the Silurian onwards. Possibly, other low-angle extensional detachments similar to the Asquempont fault occur in other parts of the massif. Possible candidates are the paraconformity-like contacts depicted on the most recent geological map of the Brabant Massif.


1989 ◽  
Vol 26 (9) ◽  
pp. 1764-1777 ◽  
Author(s):  
Michel Malo ◽  
Jacques Béland

At the southern margin of the Cambro-Ordovician Humber Zone in the Quebec Appalachians, on Gaspé Peninsula, three structural units of Middle Ordovician to Middle Devonian cover rocks of the Gaspé Belt are in large part bounded by long, straight longitudinal faults. In one of these units, the Aroostook–Percé anticlinorium, several structural features, which can be ascribed to Acadian deformation, are controlled by three subparallel, dextral, strike-slip longitudinal faults: Grande Rivière, Grand Pabos, and Rivière Garin. These faults follow bands of intense deformation, contrasting with the mildly to moderately deformed intervals that separate them.Most of the structural features observed – rotated oblique folds and cleavage, subsidiary Riedel and tension faults, and offsets of markers – can be integrated in a model of strike-slip tectonics that operated in ductile–brittle conditions. A late increment of deformation in the form of conjugate cleavages and minor faults is restricted to the bands of high strain. An anticlockwise transection of the synfolding cleavage in relation to the oblique hinges may be a feature of the rotational deformation.The combined dextral strike slip that can be measured within the three major longitudinal fault zones amounts to 138 km, to which can be added 17 km of ductile movement in the intervals, for a total of 155 km.


2021 ◽  
Author(s):  
marco cardinale ◽  
Gaetano Di Achille ◽  
David A.Vaz

<p>Orbital data from the Messenger spacecraft (1) reveal that part of the Mercury surface is covered by smooth plains, which are interpreted to be flood volcanic material across the planetary surface (2). In this work, we present a detailed geo-structural map of the northern smooth plains between<span class="Apple-converted-space">  </span>latitudes 29°N and 65°N. Our 1:100.000-scale map is obtained semi-automatically, using an algorithm to map all scarps from a DEM (3,4) followed by visual inspection and classification in ArcGIS. We created a DEM<span class="Apple-converted-space">  </span>using the raw MLA (Mercury Laser Altimeter) data (1) ,with 500 m/pix, and we used the Mercury Messenger MDIS (Mercury Dual Imaging System) (1,2) base map with 166m per pixel for the classification stage. With this approach, we mapped and characterized 51664 features on Mercury, creating a database with several morphometric attributes (e.g. length, azimuth, scarp height) which we will use to study the tectonic evolution of the smooth plains.<span class="Apple-converted-space"> </span></p> <p>In this way, we classified wrinkle ridges’s scarps, ghost craters, rim craters and central peaks. The morphometric parameters of the wrinkle ridges will<span class="Apple-converted-space">  </span>be quantitatively analyzed, in order to characterizer the possible tectonic process that could have formed them.</p> <p>This map can be considered an enhancement for the north pole of the global geological map of Mercury (1, 5).</p> <p> </p> <p>References</p> <ul> <li>Hawkins, S. E., III, et al. (2007), The Mercury Dual Imaging System on the MESSENGER spacecraft, Space Sci. Rev., 131, 247–338..<span class="Apple-converted-space"> </span></li> <li>Denevi, B. W., et al. (2013), The distribution and origin of smooth plains on Mercury, J. Geophys. Res. Planets, 118, 891–907, doi:10.1002/jgre.20075.</li> <li>Alegre Vaz, D. (2011). Analysis of a Thaumasia Planum rift through automatic mapping and strain characterization of normal faults. Planetary and Space Science, 59(11-12), 1210–1221. doi:10.1016/j.pss.2010.07.008 .</li> <li>Vaz, D. A., Spagnuolo, M. G., & Silvestro, S. (2014). Morphometric and geometric characterization of normal faults on Mars. Earth and Planetary Science Letters, 401, 83–94. doi:10.1016/j.epsl.2014.05.022.</li> <li>Kinczyk, M. J., Prockter, L., Byrne, P., Denevi, B., Buczkowski, D., Ostrach, L., & Miller, E. (2019, September). The First Global Geological Map of Mercury. In <em>EPSC-DPS Joint Meeting 2019</em> (Vol. 2019, pp. EPSC-DPS2019).</li> </ul>


1983 ◽  
Vol 73 (3) ◽  
pp. 813-829
Author(s):  
P. Yi-Fa Huang ◽  
N. N. Biswas

abstract This paper describes the characteristics of the Rampart seismic zone by means of the aftershock sequence of the Rampart earthquake (ML = 6.8) which occurred in central Alaska on 29 October 1968. The magnitudes of the aftershocks ranged from about 1.6 to 4.4 which yielded a b value of 0.96 ± 0.09. The locations of the aftershocks outline a NNE-SSW trending aftershock zone about 50 km long which coincides with the offset of the Kaltag fault from the Victoria Creek fault. The rupture zone dips steeply (≈80°) to the west and extends from the surface to a depth of about 10 km. Fault plane solutions for a group of selected aftershocks, which occurred over a period of 22 days after the main shock, show simultaneous occurrences of strike-slip and normal faults. A comparison of the trends in seismicity between the neighboring areas shows that the Rampart seismic zone lies outside the area of underthrusting of the lithospheric plate in southcentral and central Alaska. The seismic zone outlined by the aftershock sequence appears to represent the formation of an intraplate fracture caused by regional northwest compression.


2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


Sign in / Sign up

Export Citation Format

Share Document