Petrogenesis and U-Pb zircon dating of Chaitma Alkaline Complex from the southern margin of the Central Indian Tectonic Zone: geodynamic implications

2021 ◽  
pp. SP513-2021-28
Author(s):  
Satya Narayana Mahapatro ◽  
M. L. Renjith ◽  
Ranjit Kumar Martha ◽  
Rakesh Kumar Patel ◽  
Dewashish Upadhyay ◽  
...  

AbstractIn this study, we constrain the petrogenesis and U-Pb zircon age of a newly discovered alkaline complex, christened the Chaitma Alkaline Complex at the southern margin of the Central Indian Tectonic Zone in Central India. The Chaitma Alkaline Complex comprises syenites and gabbro, emplaced coevally and show features consistent with magma mixing. Geochemically, syenites are potassic to ultrapotassic (K2O/Na2O: 0.79-3.42) and contain high Ba (∼800 to 2700 ppm) and Sr (∼1400-3200 ppm). They show enrichment of the light rare earth elements (LREE) relative to the heavy rare earth elements (HREE) (La/Yb: 32-103) and do not display Eu-anomaly. Based on their geochemical signatures such as low MgO (<0.87 wt.%), Ni (8-16 ppm) and Cr (7-44 ppm) contents and prominent Zr-Hf negative anomaly, the syenites are inferred to have been derived by partial melting of a carbonated/metasomatised thickened lower crustal source. The coeval gabbros are undersaturated in silica (41-44 wt.%) with relatively high total alkalis (Na2O+K2O: 3.7-5.1 wt.%), Fe2O3 (17-19 wt.%), P2O5 (3.1-4.9 wt.%), Sr (1600-3400 ppm) and Ba (300-3500 ppm) contents. These have low MgO (<4.8 wt.%), Ni (13-30 ppm) and Cr (18-84 ppm). Their chemistry is interpreted to be the result of interaction with the syenitic magma. These geochemical characters along with high LREE/HREE ratio, negative trough in Nb-Ta, Zr-Hf, Ti, Sr and Rb and positive spike of Pb in spider diagram, and enrichment of LILE over HFSE indicate their derivation from metasomatised subduction modified garnet-peridotite mantle source. Our study indicates that syenites and gabbros of the Chaitma Alkaline Complex were formed from genetically unrelated parental magmas derived from distinct sources. U-Pb dating of zircon yielded magmatic emplacement age of 1626±15 Ma for the syenites. The Chaitma Alkaline Complex was presumably formed during a short period of crustal extension in the midst of a protracted period of continent-continent collision and granulite grade metamorphism (c. 1.71-1.58 Ga) at the southern margin of the Central Indian Tectonic Zone.

2015 ◽  
pp. 25-40
Author(s):  
Gabriel Rodríguez-García ◽  
Jose Gilberto Bermúdez-Cordero

The Gabro de Cerro Frontino was emplaced in the Cañasgordas Block, located in the Northern Segment of the Colombian Western Cordillera. It corresponds to a pluton composed of at least three magmatic pulses, emplaced during a short period of time. Gabbros and diorites are more common in the unit than clinopiroxenites, monzodiorites and monzonites. These rocks are composed of calcic to intermediate plagioclase, augite-egerine type clinopyroxene and biotite; olivine and flogopite may be present in some mafic rocks and alkali feldspar and quartz may be present in some felsic rocks. Sphene, magnetite and apatite are common accessory minerals. The silica content in the rocks varies between 37.08% and 54.4%, with constant values of MnO (0.1% 0.4%), impoverishment of Fe2O3, MgO, CaO, TiO2 and P2O5 as SiO2 increases, and enrichment of K2O, Na2O and Al2O3 as SiO2 increases. The basic and ultrabasic rocks fall in the sub-alkaline series, the rest of the samples fall in the medium to K-rich calc-alkaline series and in the shoshonitic series. The Gabro de Cerro Frontinocorresponds to magmas impoverished on heavy rare earth elements with respect to light rare earth elements, which suggests the contribution of a subduction component in the magma genesis. The LILE (Sr, K, Rb, Pb, Ba) are enriched with respect to the HFSE values that are relatively flat and impoverished; the unit also exhibits a negative anomaly of Nb with respect to Th and Ce, being a magmatic arc the environment of generation. The ages obtained in biotite using the Ar-Ar method fall between 9.87±0.18 Ma and 11.44±0.36 Ma, Middle to upper Miocene (Tortonian-Serravallian), similar to age of other plutons that are part of the Botón Arc.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 608 ◽  
Author(s):  
Rui-Gang Zhang ◽  
Wen-Yan He ◽  
Xue Gao

The Daocheng batholith consists of granite, granodiorite and K-feldspar megacrystic granite, which is located in the north Yidun Arc. It is a barren batholith in contrast to plutons of the same age that contain major copper deposits, such as Pulang to the south. In the Daocheng, abundant mafic microgranular enclaves (MMEs) mainly developed within granodiorite and K-feldspar megacrystic granite, which are characterized by quenched apatite, quartz eyes and plagioclase phenocrysts. LA-ICP-MS zircon U–Pb dating of host granodiorite yielded ages ranging from 223 Ma to 210 Ma, with a weighted mean of 215.3 ± 1.8 Ma. Zircons from MMEs yielded ages ranging from 218 Ma to 209 Ma, with a weighted mean of 214.2 ± 1.4 Ma. Geochemical analyses show that granodiorite is high-K, calc-alkaline and I-type, with SiO2 contents ranging from 67.90% to 70.54%. These rocks are metaluminous to marginally peraluminous (A/CNK = 0.98–1.00) and moderately rich in alkalis with K2O ranging from 3.28% to 4.59% and Na2O ranging from 3.18% to 3.20%, with low MgO (1.08%–1.29%), Cr (12.7 ppm–16.8 ppm), Ni (5.19 ppm–6.16 ppm) and Mg# (35–49). The MMEs have relatively low SiO2 contents (56.34%–60.91%), higher Al2O3 contents (16.06%–17.98%), higher MgO and FeO abundances and are metaluminous (A/CNK = 0.82–0.83). The MMEs and host granodiorite are enriched in light rare-earth elements (LREEs) relative to heavy rare-earth elements (HREEs), with slightly negative Eu anomalies, and enriched in Th, U and large ion lithophile elements (LILEs; e.g., K, Rb and Pb), and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, P and Ti), showing affinities typical of arc magmas. The zircon εHf(t) values (−6.28 to −2.33) and ancient two-stage Hf model ages of 1.92 to 1.25 Ga, indicating that the magmas are generally melts that incorporated significant portions of Precambrian crust. The relatively low silica contents and high Mg# values of the MMEs, and the linear patterns of MgO, Al2O3 and Fe2O3 with SiO2 between the MMEs and host granodiorite, showing the formation of MMEs are genetically related to magma mixing. The Daocheng granodiorite is characterized by much lower zircon Ce4+/Ce3+ (average of 3.53) and low fO2 value (average of ∆FMQ = –10.84), whereas the ore-bearing quartz monzonite porphyries in the Pulang copper deposit are characterized by much higher zircon Ce4+/Ce3+ (average of 52.10) and high fO2 value (average of ∆FMQ = 2.8), indicating the ore-bearing porphyry intrusions had much higher fO2 of magma than the ore-barren intrusions considering that the high oxygen fugacity of the magma is conducive to mineralization.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Galler ◽  
Semih Ener ◽  
Fernando Maccari ◽  
Imants Dirba ◽  
Konstantin P. Skokov ◽  
...  

AbstractCerium-based intermetallics are currently attracting much interest as a possible alternative to existing high-performance magnets containing scarce heavy rare-earth elements. However, the intrinsic magnetic properties of Ce in these systems are poorly understood due to the difficulty of a quantitative description of the Kondo effect, a many-body phenomenon where conduction electrons screen out the Ce-4f moment. Here, we show that the Ce-4f shell in Ce–Fe intermetallics is partially Kondo screened. The Kondo scale is dramatically enhanced by nitrogen interstitials suppressing the Ce-4f contribution to the magnetic anisotropy, in striking contrast to the effect of nitrogenation in isostructural intermetallics containing other rare-earth elements. We determine the full temperature dependence of the Ce-4f single-ion anisotropy and show that even unscreened Ce-4f moments contribute little to the room-temperature intrinsic magnetic hardness. Our study thus establishes fundamental constraints on the potential of cerium-based permanent magnet intermetallics.


2016 ◽  
Vol 159 ◽  
pp. 157-160 ◽  
Author(s):  
Takeshi Ogata ◽  
Hirokazu Narita ◽  
Mikiya Tanaka ◽  
Mihoko Hoshino ◽  
Yoshiaki Kon ◽  
...  

2021 ◽  
pp. 1-41
Author(s):  
Lianfu Hai ◽  
Qinghai Xu ◽  
Caixia Mu ◽  
Rui Tao ◽  
Lei Wang ◽  
...  

In the Tanshan area, which is at the Liupanshui Basin, abundant oil shale resources are associated with coals. We analyzed the cores, geochemistry of rare earth elements (REE) and trace element of oil shale with ICP-MS technology to define the palaeo-sedimentary environment, material source and geological significance of oil shale in this area. The results of the summed compositions of REE, and the total REE contents (SREE), in the Yan'an Formation oil shale are slightly higher than the global average of the composition of the upper continental crustal (UCC) and are lower than that of North American shales. The REE distribution pattern is characterized by right-inclined enrichment of light rare earth elements (LREE) and relative loss of heavy rare earth elements (HREE), which reflects the characteristics of crustal source deposition. There is a moderate degree of differentiation among LREE, while the differences among HREE are not obvious. The dEu values show a weak negative anomaly and the dCe values show no anomaly, which are generally consistent with the distribution of REE in the upper crust. The characteristics of REE and trace elements indicate that the oil shale formed in an oxygen-poor reducing environment and that the paleoclimatic conditions were relatively warm and humid. The degree of differentiation of REE indicates that the sedimentation rate in the study area was low, which reflected the characteristics of relatively deep sedimentary water bodies and distant source areas. The results also proved that the source rock mainly consisted of calcareous mudstone, and a small amount of granite was also mixed in.


2012 ◽  
Vol 43 (3) ◽  
pp. 262-274 ◽  
Author(s):  
J. Borrego ◽  
B. Carro ◽  
N. López-González ◽  
J. de la Rosa ◽  
J. A. Grande ◽  
...  

The concentration of rare earth elements together with Sc, Y, and U, as well as rare earth elements fractionation patterns, in the water of an affected acid mine drainage system were investigated. Significant dissolved concentrations of the studied elements were observed in the fluvial sector of this estuary system (Sc ∼ 31 μg L−1, Y ∼ 187 μg L−1, U ∼ 41 μg L−1, Σ rare earth elements ∼621 μg L−1), with pH values below 2.7. In the mixing zone of the estuary, concentrations are lower (Sc ∼ 2.1 μg L−1; Y ∼ 16.7 μg L−1; U ∼ 4.8 μg L−1; Σ rare earth elements ∼65.3 μg L−1) and show a strong longitudinal gradient. The largest rare earth elements removal occurs in the medium-chlorinity zone and it becomes extreme for heavy rare earth elements, as observed for Sc. Samples of the mixing zone show a North American Shale normalized pattern similar to the fluvial zone water, while the samples located in the zone with pH between 6.5 and 7.7 show a depletion of light rare earth elements relative to middle rare earth elements and heavy rare earth elements, similar to that observed in samples of the marine estuary.


2016 ◽  
Vol 25 (4) ◽  
pp. 60-67
Author(s):  
Sungeun Lee ◽  
Joung Woon Kim ◽  
Jong Hyuk Jeon ◽  
Hong Myeong Jun ◽  
Jin Young Lee ◽  
...  

2021 ◽  
Author(s):  
Bin Wang ◽  
Yuzhe Zhang ◽  
Wen Sun ◽  
Xudong Zheng ◽  
Zhongyu Li

The recovery of rare earth elements, especially heavy rare earth elements, from rare earth waste products has a high economic and environmental beneficial result. In this paper, cellulose nanocrystals used...


Sign in / Sign up

Export Citation Format

Share Document